Predicting Proficiency on the State of Texas Assessments of Academic Readiness (STAAR) Based on NWEA MAP Growth Scores

July 2025

NWEA Psychometrics and Analytics

Linking Study Updates

Date	Description
2020–07–23	Initial linking study conducted for the State of Texas Assessments of Academic Readiness (STAAR) in grades 3–8 for mathematics and English language arts (ELA) and in grades 5 and 8 for science using Spring 2017 data
2024–07–01	Updated the linking study for the State of Texas Assessments of Academic Readiness (STAAR) in grades 3–8 for mathematics and English language arts (ELA) and in grades 5 and 8 for science using Spring 2023 data due to the state assessment redesign
2024–09–10	Updated Table E.1 science data for correct grades
2025-07	Updated the linking study based on the 2025 norms.

Acknowledgements: This report was made possible with the contributions of Yan Zhou, Ann Hu, Justin Schreiber, Christopher Wells, and Derek May. We appreciate our colleagues at NWEA and all our partners who provided data for the study.

© 2025 NWEA. NWEA and MAP Growth are registered trademarks of NWEA in the U.S. and in other countries. All rights reserved. No part of this document may be modified or further distributed without written permission from NWEA.

Table of Contents

Executive Summary	1
1. Introduction	4
1.1. Purpose of the Study	4
1.2. Assessment Overview	
2. Methods	5
2.1. Data Collection	5
2.2. Post-Stratification Weighting	5
2.3. Descriptive Statistics	5
2.4. MAP Growth Cut Scores	5
2.5. Classification Accuracy	7
2.6. Proficiency Projections	7
3. Results	9
3.1. Study Sample	9
3.2. Descriptive Statistics	.12
3.3. MAP Growth Cut Scores	.13
3.4. Classification Accuracy	.16
3.5. Proficiency Projections	.18
References	.31
Table E.1. MAP Growth RIT Meets Grade Level Cut Scores in State Summative Assessments	
Table 2.1. Description of Classification Accuracy Summary Statistics	
Table 3.1. Linking Study Sample Demographics (Unweighted)	
Table 3.3. Linking Study Sample Demographics (Weighted)	
· · · · · · · · · · · · · · · · · · ·	
Table 3.8. Classification Accuracy Results	
Table 3.9. Proficiency Projections Based on RIT Scores—Mathematics	.19
Table 3.10. Proficiency Projections Based on RIT Scores—ELA/Reading	.24
Table 3.11. Proficiency Projections Based on RIT Scores—Science	.29
List of Figures	
Figure E.1. Correlations Between MAP Growth and State Summative Assessment Scores	
ble 3.9. Proficiency Projections Based on RIT Scores—Mathematics	

Executive Summary

Linking studies allow partners to use MAP® Growth™ Rasch Unit (RIT) scores throughout the year to predict students' performance levels on state summative assessments. This is accomplished through statistical analyses that produce RIT cut scores that correspond to state summative performance levels. A "cut score" is the minimum score a student must get on a test to be placed at a certain performance level. The linking study for the State of Texas Assessments of Academic Readiness (STAAR) described in this report provides RIT cut scores for the fall, winter, and spring MAP Growth administrations that correspond to the STAAR performance levels for each subject and grade. Educators can use the RIT cut scores to identify students at risk of not meeting state proficiency standards and provide targeted instruction to improve academic outcomes.

The linking study is based on test scores from students in grades 3–8 for mathematics and ELA and grades 5 and 8 for science who took both the MAP Growth and STAAR assessments in Spring 2023. In total, this study included 47,303 students from 278 schools within 75 districts in Texas.

Prior to initiating the linking analyses, NWEA confirmed that the content standards used to construct the MAP Growth interim assessment were aligned with those of the STAAR, thus warranting a connection. Further investigation into the relationship between MAP Growth and STAAR involved calculating correlation coefficients to illustrate the association between the MAP Growth scores and the summative test scores of STAAR. A high positive correlation (e.g., ≥ 0.70) shows that students who perform well on one assessment also tend to perform well on the other, and vice versa, with 1.00 being a perfect positive correlation. As shown in Figure E.1, the correlations between the MAP Growth and STAAR test scores in all subjects and grades are higher than 0.70, indicating that MAP Growth is a good assessment for predicting performance on the STAAR spring summative assessments.

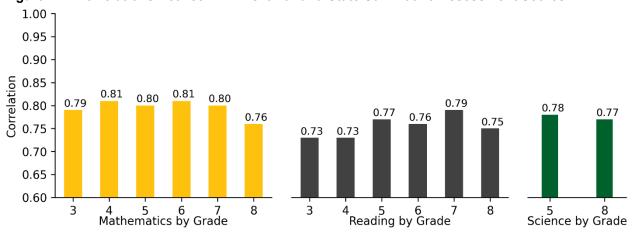


Figure E.1. Correlations Between MAP Growth and State Summative Assessment Scores

The equipercentile linking method (Kolen & Brennan, 2004) was used to produce the RIT cut scores for the spring administration that correspond to performance levels on the STAAR summative assessments for every subject and grade. MAP Growth cut scores for grade 2, as well as those for the fall and winter administrations of all grades, are also provided so that educators can track grade 2 students' progress on the STAAR test by grade 3, alongside all

other students, early in the year. These cut scores were derived from the spring cuts¹ and the growth norms for the adjacent grades (i.e., grades 2 to 3), or fall and winter administrations to the spring administration. While RIT cut scores were generated for every performance level on the STAAR summative assessments, Table E.1 presents the Meets Grade Level cut scores that indicate the minimum score a student must get to be considered proficient for accountability purposes.

Table E.1. MAP Growth RIT Meets Grade Level Cut Scores in State Summative Assessments

Assessm	ont.	М	eets Gr	ade Le	vel Cut	Scores	by Gr	ade
ASSESSIII	ent	2	3	4	5	6	7	8
Mathematics								
STAAF	R Spring	_	1471	1557	1634	1745	1793	1859
	Fall	185	194	207	213	220	224	226
MAP Growth	Winter	193	203	215	219	226	228	230
	Spring	198	209	220	223	230	231	233
ELA/Reading								
STAAF	R Spring	-	1467	1552	1592	1634	1669	1698
	Fall	174	188	203	207	212	214	216
MAP Growth	Winter	180	193	206	209	214	215	217
	Spring	185	197	208	211	215	216	218
Science								
STAAF	R Spring	_	_	-	4000	_	_	4000
	Fall	_	-	_	214	-	_	219
MAP Growth	Winter	_	_	_	217	-	_	220
	Spring	_	_	_	218	_	_	221

Educators can use these cut scores to determine whether students are on track for proficiency (Meets Grade Level or higher) on the state assessments. For example, the Meets Grade Level cut score on the grade 3 STAAR mathematics summative test is 1471. A grade 3 student with a MAP Growth mathematics RIT score of 194 in the fall is likely to meet proficiency on the STAAR mathematics summative test in the spring, whereas a grade 3 student with an RIT score lower than 194 in the fall is in jeopardy of not meeting proficiency. MAP Growth cut scores for grade 2 are also provided so that educators can track early learners' progress toward proficiency on the STAAR spring summative assessment by grade 3.

¹ To enhance content validity, NWEA developed an Enhanced Item-Selection Algorithm (EISA) for the MAP Growth assessment to prioritize grade-level content. A pilot study (Meyer et al., 2023) showed that students taking MAP Growth with EISA demonstrated higher average math scores compared with those taking traditional MAP Growth. To improve score comparability, NWEA (Lewis & Kuhfeld, 2024) developed concordance tables to adjust mathematics scores from traditional assessments to align with scores from MAP Growth with EISA, or vice versa. Given that the data for this study were collected from traditional MAP Growth tests but that the results will be used for MAP Growth with EISA, the spring cuts for mathematics were adjusted using the concordance tables before being used to derive other cut scores. This score adjustment will become unnecessary for future linking studies once the new data from EISA tests are collected.

As further evidence that MAP Growth scores can be used to predict students' on the state tests, NWEA calculated classification accuracy statistics that show how well the RIT scores correctly classified, or predicted, students as proficient on the STAAR summative tests.² For example, the grade 3 MAP Growth mathematics *Meets Grade Level* cut score has a 0.86 accuracy rate, meaning it accurately predicted student achievement on the state test for 86% of the sample. A high statistic indicates high accuracy. Overall, MAP Growth scores have a high accuracy rate of identifying student proficiency on the STAAR summative tests, as illustrated in Figure E.2.

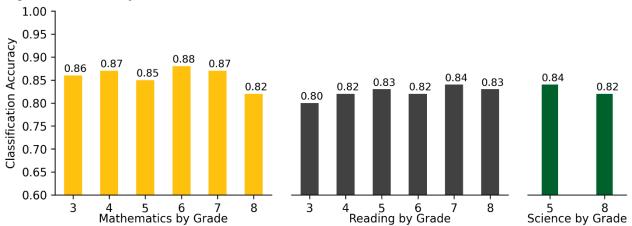


Figure E.2. Accuracy of MAP Growth Classifications

Please note that the purpose of this report is to explain NWEA's linking study methodology. It is not meant as the main reference for determining a student's likely performance on the state summative assessments. The cut scores in this report are based on the default instructional weeks most encountered for each term (i.e., Weeks 4, 20, and 32 for fall, winter, and spring, respectively), whereas instructional weeks often vary by district. The cut scores in this report may therefore differ from the results in the NWEA reporting system that reflect the specific instructional weeks set by partners. Partners should therefore reference their MAP Growth score reports instead.

² The classification accuracy calculations for the mathematics spring cuts were based on the concorded cut scores.

1. Introduction

1.1. Purpose of the Study

NWEA® is committed to providing partners with useful tools to help make inferences about student learning from MAP® Growth™ test scores. One important use of MAP Growth results is to predict a student's performance on state summative assessments at different times throughout the year. This allows educators and parents to determine if a student is on track in their learning to meet state standards by the end of the year or, given a student's learning profile, is on track to obtain rigorous, realistic growth in their content knowledge and skills.

This report presents results from a linking study performed by NWEA aiming to statistically connect the Rasch Unit (RIT) scores obtained from the MAP Growth assessments with the results of the State of Texas Assessments of Academic Readiness (STAAR) spring summative assessments. These assessments cover mathematics and English language arts (ELA) for grades 3–8 and science for grades 5 and 8. The data utilized to generate this report are comprised of the STAAR test scores collected during Spring 2023. MAP Growth cut scores are also included for grade 2 so that educators can track early learners' progress toward proficiency on the STAAR summative test by grade 3. Specifically, this report presents the following results:

- 1. Student sample demographics
- 2. Descriptive statistics of test scores
- 3. MAP Growth cut scores from fall, winter, and spring that correspond to the performance levels on the STAAR spring summative assessments
- 4. Classification accuracy statistics to determine the degree to which MAP Growth accurately predicts student proficiency status on the STAAR summative tests
- 5. The probability of achieving grade-level proficiency (*Meets Grade Level* or higher) on the STAAR summative assessments based on MAP Growth RIT scores from fall, winter, and spring

1.2. Assessment Overview

The STAAR tests are Texas's state summative assessments aligned to the Texas Essential Knowledge and Skills (TEKS) curriculum. Based on their test scores, students are placed into one of four performance levels: *Did Not Meet Grade Level*, *Approaches Grade Level*, *Meets Grade Level*, and *Masters Grade Level*. The *Meets Grade Level* cut score demarks the minimum level of achievement considered to be proficient for accountability purposes.

MAP Growth tests are adaptive interim assessments aligned to state-specific content standards and administered in the fall, winter, and spring. Scores are reported on the RIT vertical scale with a range of 100 to 350. To aid the interpretation of scores, NWEA conducts norming studies of student and school performance on MAP Growth. Growth norms provide expected score gains across test administrations (e.g., the relative evaluation of a student's growth from fall to spring), which are used to conduct the linking studies. The most recent norms study was conducted in 2025 (NWEA, 2025).

2. Methods

2.1. Data Collection

This linking study is based on data from the Spring 2023 administration of the MAP Growth and STAAR summative assessments. Each student's state testing record was matched to their MAP Growth score based on the student's state identifier. Only students who have scores on both the MAP Growth and STAAR summative assessments in Spring 2023 were included in the study sample.

2.2. Post-Stratification Weighting

Post-stratification weights were applied to the calculations to ensure that the linking study sample represented the state's test-taking student population in terms of race, sex, and performance level. These variables were selected because they are known to be correlated with students' academic achievement and are often available in state summative assessment reports. The weighted sample will match the target population as closely as possible for the key demographics and performance characteristics defined by the state.

A raking procedure was used to calculate the post-stratification weights that either compensate for the underrepresentation of certain groups or attenuate the overrepresentation of certain groups. Raking uses iterative procedures to obtain weights that match sample marginal distributions to known population margins. The following steps were taken during this process:

- 1. Calculate marginal distributions of race, sex, and performance level for the sample and population.
- 2. Calculate post-stratification weights with the rake function from the survey package in R (Lumley, 2019).
- 3. Apply the weights to the sample before conducting the linking study analyses.

2.3. Descriptive Statistics

Descriptive statistics are provided to summarize the test scores for the MAP Growth and STAAR assessments, including test score mean, standard deviation (SD), minimum, and maximum. The mean presents the average test scores across all students in the study sample, and the SD indicates the variability of test scores, revealing how students' scores are distributed around the average score, or mean. Correlation coefficients are also provided to answer the question "How well do the test scores from MAP Growth (that reference the RIT scale) correlate to the scores obtained from the STAAR summative tests (that reference some other scale) in the same subject?" The correlations were calculated as:

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

where r is the correlation coefficient, x_i and y_i are the values of the x- and y-variables in a sample, and \overline{x} and \overline{y} are the mean of the values of the x- and y-variables.

2.4. MAP Growth Cut Scores

MAP Growth cut scores that predict student achievement on the STAAR summative assessments are reported for grades 3–8 in mathematics and ELA and grades 5 and 8 in science, as well as for grade 2 in mathematics and ELA so that educators can track early

learners' progress toward proficiency (*Meets Grade Level* or higher) on the STAAR summative test by grade 3. Percentile ranks based on the most recent NWEA norms are also provided. These are useful for understanding how students' scores compare with peers nationwide and the relative rigor of a state's performance level designations for its summative assessment.

The equipercentile linking method (Kolen & Brennan, 2004) was used to identify the spring MAP Growth RIT scores for grades 3–8 in mathematics and ELA, as well as for grades 5 and 8 in science, that correspond to the STAAR spring summative performance level cut scores. The equipercentile linking procedure matches scores on the two scales that have the same percentile rank (i.e., the proportion of tests at or below each score). For example, let x represent a score on Test X (e.g., STAAR summative). Its equipercentile equivalent score on Test Y (e.g., MAP Growth), $e_y(x)$, can be obtained through a cumulative-distribution-based linking function defined as:

$$e_y(x) = G^{-1}[P(x)]$$

where $e_y(x)$ is the equipercentile equivalent of score x on the STAAR summative tests on the scale of MAP Growth, P(x) is the percentile rank of a given score on the STAAR summative tests, and G^{-1} is the inverse of the percentile rank function for MAP Growth that indicates the score on MAP Growth corresponding to a given percentile. Polynomial loglinear pre-smoothing was applied to reduce irregularities of the score distributions and equipercentile linking curve.

The MAP Growth conditional growth norms provide students' expected score gains across terms, such as growth from fall to spring within the same grade or from spring of a lower grade to spring of the adjacent higher grade. This information was used to calculate the fall and winter cut scores for grades 3–8 in mathematics and ELA and for grades 5 and 8 in science. The equation below was used to determine the previous term's MAP Growth score needed to reach the spring cut score, considering the expected growth associated with the previous RIT score:

$$RIT_{PredSpring} = RIT_{previous} + g$$

where:

- ullet RIT_{PredSpring} is the predicted MAP Growth spring score,
- RIT_{previous} is the previous term's RIT score, and
- *g* is the expected growth from the previous RIT (e.g., fall or winter) to the spring RIT score.

The most recent MAP Growth conditional growth norms were also used to calculate the fall, winter, and spring cuts for grade 2. Students do not begin taking the STAAR summative assessment until grade 3. Thus, to derive the spring cut scores for grade 2, the growth score from spring of one year to the next was used (i.e., the growth score from spring of grade 2 to spring of grade 3). The calculation of fall and winter cuts for grade 2 followed the same process as for the other grades. For example, the growth score from fall to spring in grade 2 was used to calculate the fall cuts for this grade.

2.5. Classification Accuracy

The degree to which MAP Growth predicts student proficiency status on the STAAR summative tests can be described using classification accuracy statistics based on the MAP Growth spring RIT cut scores. The results show the proportion of students correctly classified by their RIT scores as proficient or not proficient on the STAAR spring summative tests. Table 2.1 describes the classification accuracy statistics provided in this report (Pommerich et al., 2004).

Table 2.1. Description of Classification Accuracy Summary Statistics

Statistic	Description	Interpretation
Overall Classification Accuracy Rate	(TP + TN) / (total sample size)	Proportion of the study sample whose proficiency classification on the state test was correctly predicted by MAP Growth cut scores
False Negative (FN) Rate	FN / (FN + TP)	Proportion of students identified by MAP Growth as not proficient in those observed as proficient on the state test
False Positive (FP) Rate	FP / (FP + TN)	Proportion of students identified by MAP Growth as not proficient in those observed as not proficient on the state test
Sensitivity	TP / (TP + FN)	Proportion of students identified by MAP Growth as proficient in those observed as such on the state test
Specificity	TN / (TN + FP)	Proportion of students identified by MAP Growth as not proficient in those observed as such on the state test
Precision	TP / (TP + FP)	Proportion of students observed as proficient on the state test in those identified as such by the MAP Growth test
Area Under the Curve (AUC)	Area under the receiver operating characteristics (ROC) curve	How well MAP Growth cut scores separate the study sample into proficiency categories that match those from the state test cut scores. An AUC at or above 0.80 is considered "good" accuracy.

Note. FP = false positives; FN = false negatives; TP = true positives; TN = true negatives.

2.6. Proficiency Projections

Given that all test scores contain measurement errors, reaching the *Meets Grade Level* RIT cut does not guarantee that a student is proficient on the state test. Instead, it can be claimed that a student meeting the RIT cut score has a 50% chance of reaching proficiency on the state test, with their chances increasing the greater their score is from the cut. The proficiency projections indicate these probabilities for various RIT scores throughout the year.

In addition to calculating the MAP Growth fall and winter cut scores (and the projected grade 2 cut scores), the MAP Growth conditional growth norms data were also used to calculate the probability of reaching proficiency on the STAAR summative tests based on a student's RIT scores from fall and winter:

$$Pr(Achieving \ proficiency \ in \ spring | \ starting \ RIT) = \Phi\left(\frac{RIT_{previous} + g - RIT_{SpringCut}}{SD}\right)$$

where:

- Φ is the standard normal cumulative distribution function,
- RIT_{previous} is the student's RIT score in fall or winter,
- g is the expected growth from the previous RIT (e.g., fall or winter) to the spring RIT,
- RIT_{SpringCut} is the MAP Growth Meets Grade Level cut score for spring, and
- SD is the conditional standard deviation of the expected growth, g.

The equation below was used to estimate the probability of a student achieving proficiency performance on the STAAR summative tests based on their spring RIT score (RIT_{Spring}):

$$Pr(Achieving \ proficiency \ in \ spring \ | \ spring \ RIT) = \Phi\left(\frac{RIT_{Spring} - RIT_{SpringCut}}{SE}\right)$$

where SE is the standard error of measurement for MAP Growth.

3. Results

3.1. Study Sample

Only students who have scores on both the MAP Growth and STAAR summative assessments in Spring 2023 were included in the study sample. The mathematics and ELA data used in this study were collected from 75 districts and 278 schools in Texas. Table 3.1 presents the distributions of students by race, sex, and performance level in the original unweighted study sample. Table 3.2 presents the distributions of the target population of students who took the STAAR tests. Since the original study sample is different from the target STAAR population, post-stratification weights were applied to improve its representativeness. Table 3.3 presents the demographic distributions of the sample after weighting, which are almost identical to the STAAR student population distributions. The analyses in this study were therefore conducted using the weighted sample.

Table 3.1. Linking Study Sample Demographics (Unweighted)

Domograph	ia Cubanaua	Percent	age of St	udents in	Each Su	bgroup b	y Grade
Demograph	ic Subgroup	3	4	5	6	7	8
Mathematics							
	Total N-Count	7,584	7,431	7,505	7,354	7,308	5,434
	AI/AN	0.6	0.4	0.3	0.4	0.5	0.5
	Asian	7.2	6.8	6.5	5.0	5.3	3.4
	Black	23.1	24.1	24.3	24.2	24.3	27.3
Race	Hispanic	32.0	32.0	31.1	32.5	32.4	37.1
	NH/PI	0.2	0.2	0.2	0.1	0.1	0.1
	Other	5.0	4.5	4.7	4.9	4.4	4.0
	White	32.0	32.1	32.9	33.0	33.0	27.6
Sex	Female	49.5	50.0	49.3	49.0	48.7	48.4
Sex	Male	50.5	50.0	50.7	51.0	51.3	51.6
	Did Not Meet	24.5	27.2	17.9	21.6	29.6	24.8
Performance	Approaches	28.0	22.6	30.0	34.8	24.7	35.7
Level	Meets	27.0	26.0	29.7	26.9	29.4	30.7
	Masters	20.5	24.2	22.4	16.7	16.3	8.8
ELA/Reading							
•	Total N-Count	8,037	6,871	6,735	6,870	7,100	5,971
	AI/AN	0.5	0.4	0.3	0.3	0.5	0.5
	Asian	7.7	6.4	5.6	5.1	5.6	5.4
	Black	21.8	24.3	24.9	24.0	24.2	26.2
Race	Hispanic	33.5	30.2	28.6	30.6	30.9	26.5
	NH/PI	0.2	0.2	0.3	0.1	0.1	0.2
	Other	5.1	4.6	4.8	5.0	4.5	4.5
	White	31.2	34.0	35.4	34.7	34.1	36.7
Se	Female	48.9	49.9	49.8	48.8	48.6	49.0
Sex	Male	51.1	50.1	50.2	51.2	51.4	51.0
	Did Not Meet	20.1	16.8	16.5	21.0	20.0	13.1
Performance Level	Approaches	25.4	27.0	23.1	25.4	23.8	26.0
LEVEI	Meets	30.2	27.8	29.8	31.0	29.5	31.2

Demographic Subgroup		Percent	Percentage of Students in Each Subgroup by Grade							
Demograph	ic Subgroup	3	4	5	6	7	8			
	Masters	24.3	28.4	30.6	22.6	26.7	29.8			
Science										
-	Total N-Count	ı	-	7,138	-	_	7,093			
	AI/AN	_	-	0.3	_	_	0.5			
	Asian	_	-	7.0	_	_	5.4			
	Black	_	_	24.6	_	_	23.9			
Race	Hispanic	_	_	31.3	_	_	35.3			
	NH/PI	_	_	0.2	_	_	0.1			
	Other	_	_	4.6	_	_	4.3			
	White	_	_	31.9	_	_	30.6			
Cov	Female	_	_	49.4	_	_	48.6			
Sex	Male	_	-	50.6	_	_	51.4			
	Did Not Meet	_	-	33.0	_	_	27.5			
Performance	Approaches	_	_	30.1	_	_	28.1			
Level	Meets	_	_	20.8	_	_	29.7			
	Masters	_		16.1	_		14.6			

Note. Al/AN = American Indian or Alaska Native; NH/PI = Native Hawaiian or Other Pacific Islander; Other = Two or More Races or Not Specified.

Table 3.2. Linking Study Population Demographics

Demographic Subgroup		Percei	ntage of S	tudents in	Each Sub	group by	Grade
Demograph	ic Subgroup	3	4	5	6	7	8
Mathematics							
•	Total N-Count	370,006	373,988	378,663	384,766	331,698	364,110
	AI/AN	0.3	0.3	0.3	0.3	0.3	0.3
	Asian	5.7	5.7	5.6	5.0	4.3	4.5
	Black	12.9	12.8	12.8	12.8	13.1	13.5
Race	Hispanic	50.0	50.8	51.2	52.8	54.6	53.3
	NH/PI	0.2	0.2	0.2	0.2	0.2	0.2
	Other	3.9	3.7	3.5	3.5	3.2	3.3
	White	27.1	26.6	26.5	25.5	24.4	24.9
Sov	Female	49.1	49.3	49.1	49.2	49.1	48.6
Sex	Male	50.9	50.7	50.9	50.8	50.9	51.4
	Did Not Meet	28.0	30.0	21.0	26.0	39.0	26.0
Performance	Approaches	29.0	23.0	29.0	37.0	26.0	30.0
Level	Meets	24.0	25.0	29.0	22.0	25.0	28.0
	Masters	19.0	22.0	21.0	15.0	10.0	16.0
ELA/Reading							
•	Total N-Count	356,558	365,035	372,677	391,376	400,416	410,472
	AI/AN	0.3	0.3	0.3	0.3	0.3	0.3
Page	Asian	5.9	6.0	5.8	5.4	5.2	5.0
Race	Black	13.4	13.1	13.0	12.6	12.5	12.7
	Hispanic	48.1	49.4	50.1	52.5	52.8	53.3

Demographic Subgroup		Percentage of Students in Each Subgroup by Grade								
Demograph	ic Subgroup	3	4	5	6	7	8			
	NH/PI	0.2	0.2	0.2	0.2	0.2	0.2			
	Other	4.0	3.7	3.6	3.4	3.3	3.2			
	White	28.1	27.4	27.0	25.6	25.7	25.3			
Sex	Female	49.0	49.1	49.0	49.1	48.9	48.8			
Sex	Male	51.0	50.9	51.0	50.9	51.1	51.2			
	Did Not Meet	23.0	22.0	19.0	25.0	23.0	18.0			
Performance	Approaches	27.0	31.0	25.0	25.0	25.0	26.0			
Level	Meets	30.0	26.0	28.0	29.0	26.0	29.0			
	Masters	20.0	21.0	28.0	21.0	26.0	27.0			
Science										
•	Total N-Count	-	_	378,742			407,847			
	AI/AN	_	_	0.3	_	_	0.3			
	Asian	_	_	5.7	_	_	4.9			
	Black	_	_	12.8	_	_	12.8			
Race	Hispanic	_	_	51.0	_	_	53.1			
	NH/PI	_	_	0.2	_	_	0.2			
	Other	_	_	3.5	_	_	3.2			
	White	ı	_	26.6	_	_	25.4			
Sex	Female	-	-	49.1	-	-	48.9			
Sex	Male	-	-	50.9	-	-	51.1			
	Did Not Meet	-	_	36.0	_	_	28.0			
Performance	Approaches	_	_	30.0	_	-	27.0			
Level	Meets	_	_	19.0	_	_	29.0			
	Masters	_	_	15.0			16.0			

Note. Al/AN = American Indian or Alaska Native; NH/PI = Native Hawaiian or Other Pacific Islander; Other = Two or More Races or Not Specified.

 Table 3.3. Linking Study Sample Demographics (Weighted)

Domographi	ic Subaroup	Percent	age of St	udents in	Each Su	bgroup b	y Grade
Demograpin	Demographic Subgroup			5	6	7	8
Mathematics							
	Total N-Count	7,584	7,431	7,505	7,354	7,308	5,434
	AI/AN	0.3	0.3	0.3	0.3	0.3	0.3
	Asian	5.7	5.7	5.6	5.0	4.3	4.5
	Black	12.9	12.8	12.8	12.8	13.1	13.5
Race	Hispanic	50.0	50.8	51.2	52.8	54.6	53.3
	NH/PI	0.2	0.2	0.2	0.2	0.2	0.2
	Other	3.9	3.6	3.5	3.4	3.2	3.3
	White	27.1	26.6	26.5	25.5	24.4	24.9
Say	Female	49.1	49.3	49.1	49.2	49.1	48.6
Sex	Male	50.9	50.7	50.9	50.8	50.9	51.4
Performance	Did Not Meet	28.0	30.0	21.0	26.0	39.0	26.0
Level	Approaches	29.0	23.0	29.0	37.0	26.0	30.0

Domonionhi	ia Culturaum	Percent	age of St	udents in	Each Su	bgroup b	y Grade
Demographi		3	4	5	6	7	8
	Meets	24.0	25.0	29.0	22.0	25.0	28.0
	Masters	19.0	22.0	21.0	15.0	10.0	16.0
ELA/Reading							
	Total N-Count	8,037	6,871	6,735	6,870	7,100	5,971
	AI/AN	0.3	0.3	0.3	0.3	0.3	0.3
	Asian	5.9	5.9	5.8	5.4	5.2	5.0
	Black	13.4	13.1	13.0	12.6	12.5	12.7
Race	Hispanic	48.1	49.4	50.1	52.5	52.8	53.3
	NH/PI	0.2	0.2	0.2	0.2	0.2	0.2
	Other	4.0	3.7	3.6	3.4	3.3	3.2
	White	28.1	27.4	27.0	25.6	25.7	25.3
Sex	Female	49.0	49.1	49.0	49.1	48.9	48.8
	Male	51.0	50.9	51.0	50.9	51.1	51.2
	Did Not Meet	23.0	22.0	19.0	25.0	23.0	18.0
Performance	Approaches	27.0	31.0	25.0	25.0	25.0	26.0
Level	Meets	30.0	26.0	28.0	29.0	26.0	29.0
	Masters	20.0	21.0	28.0	21.0	26.0	27.0
Science							
	Total N-Count	_	-	7,138	_	-	7,093
	AI/AN	_	_	0.3	_	_	0.3
	Asian	_	_	5.7	_	_	4.9
	Black	_	_	12.8	_	_	12.8
Race	Hispanic	_	_	51.0	_	_	53.1
	NH/PI	_	_	0.2	_	_	0.2
	Other	_	_	3.5	_	_	3.2
	White	_	-	26.6	_	_	25.4
Sex	Female	_		49.1	-	_	48.9
Jex	Male			50.9			51.1
	Did Not Meet	_		36.0			28.0
Performance	Approaches	_	_	30.0	_	_	27.0
Level	Meets	_	_	19.0	_	_	29.0
	Masters	_	_	15.0	_	_	16.0

Note. Al/AN = American Indian or Alaska Native; NH/PI = Native Hawaiian or Other Pacific Islander; Other = Two or More Races or Not Specified.

3.2. Descriptive Statistics

Table 3.4 presents descriptive statistics of the MAP Growth and STAAR summative test scores from Spring 2023, including the correlation coefficients (*r*) between them. The coefficients between the scores range from 0.76 to 0.81 for mathematics, 0.73 to 0.79 for ELA/reading, and 0.77 to 0.78 for science. These values indicate a high positive correlation among the scores, which is important validity evidence for the claim that MAP Growth scores are good predictors of performance on the STAAR spring summative assessments.

Table 3.4. Descriptive Statistics of Test Scores

Grada	NI			STA	AR			MAP G	rowth	
Grade	N	r	Mean	SD	Min.	Max.	Mean	SD	Min.	Max.
Mathen	natics									
3	7,584	0.79	1456.3	152.2	860	2070	202.0	15.0	131	257
4	7,431	0.81	1558.0	165.4	910	2130	211.7	16.1	136	271
5	7,505	0.80	1644.1	160.9	1000	2200	218.2	16.4	144	269
6	7,354	0.81	1717.7	154.2	1070	2350	221.2	16.3	159	271
7	7,308	0.80	1764.6	149.5	1150	2400	222.1	17.0	159	289
8	5,434	0.76	1848.0	141.6	1240	2470	224.8	16.5	162	273
ELA/Re	ading									
3	8,037	0.73	1465.0	159.6	720	2120	194.9	16.9	141	245
4	6,871	0.73	1543.2	156.6	820	2210	204.5	16.2	146	255
5	6,735	0.77	1607.8	152.4	830	2198	211.3	16.2	144	268
6	6,870	0.76	1632.8	144.4	880	2280	212.9	16.4	153	260
7	7,100	0.79	1673.5	148.8	890	2290	214.8	17.3	152	271
8	5,971	0.75	1714.7	142.0	980	2360	219.0	16.3	155	266
Science	9									
5	7,138	0.78	3756.4	548.0	1140	6200	211.4	12.9	151	261
8	7,093	0.77	3934.5	655.9	1000	6800	217.3	14.6	155	276

Note. SD = standard deviation; Min. = minimum; Max. = maximum.

3.3. MAP Growth Cut Scores

Table 3.5 to Table 3.7 present the STAAR summative scale score ranges and the corresponding MAP Growth RIT cut scores and percentile ranges by content area and grade. Bold numbers indicate the cut scores considered to be at least *Meets Grade Level* for accountability purposes. These tables can be used to predict a student's likely performance level based on the STAAR spring summative assessments when MAP Growth is taken in the fall and winter. For example, a grade 3 student who obtained a MAP Growth mathematics RIT score of 194 in the fall is likely to achieve *Meets Grade Level* on the STAAR spring summative mathematics test. A grade 3 student who obtained a MAP Growth mathematics RIT score of 203 in the winter is also likely to achieve *Meets Grade Level* on the STAAR spring summative assessment. The winter cut score is higher than the fall cut score because growth is expected between fall and winter as students receive more instruction during the school year.

Within this report, the cut scores for fall and winter are derived from the spring cuts and the typical growth scores from fall-to spring or winter-to-spring. The typical growth scores are based on the default instructional weeks most encountered for each term (Weeks 4, 20, and 32 for fall, winter, and spring, respectively). Since instructional weeks often vary by district, the cut scores in this report may differ slightly from the MAP Growth score reports that reflect instructional weeks set by partners. If the actual instructional weeks deviate substantially from the default ones, a student's expected performance level could be different from the projections presented in this report. Partners are therefore encouraged to use the projected performance level in students' score reports, since these reflect the specific instructional weeks set by partners.

Table 3.5. MAP Growth Cut Scores—Mathematics

STAAR Mathematics										
Grade	Did N	lot Meet	Appr	oaches	М	eets	Ма	sters		
3) 1470	1471 –1599)–2070		
4		–1461		2–1556	1557 –1689		1690–2130			
5)–1514		5–1633		1 –1775		5–2200		
6)–1615		6–1744		5 –1888		9–2350		
7)–1702		3–1792		3 –1964		5–2400		
8)–1753		1–1858		9–2008		9–2470		
				Growth Mat						
	Did N	lot Meet		oaches		eets	Ма	sters		
Grade	RIT	Percentile	RIT	Percentile	RIT	Percentile	RIT	Percentile		
Fall										
2	100–168	1–39	169–184	40–77	185 –198	78–94	199–350	95–99		
3	100–181	1–44	182–193	45–73	194 –205	74–91	206–350	92–99		
4	100–195	1–46	196–206	47–72	207 –217	73–90	218–350	91–99		
5	100–199	1–34	200–212	35–65	213 –224	66–87	225–350	88–99		
6	100–204	1–36	205–219	37–72	220 –232	73–91	233–350	92–99		
7	100–211	1–37	212–223	38–64	224 –239	65–90	240-350	91–99		
8	100–214	1–34	215–225	35–58	226 –241	59–85	242-350	86–99		
Winter										
2	100–176	1–38	177–192	39–76	193 –206	77–94	207–350	95–99		
3	100–189	1–43	190–202	44–73	203 –214	74–90	215–350	91–99		
4	100–202	1–46	203–214	47–72	215 –225	73–89	226–350	90–99		
5	100–205	1–36	206–218	37–65	219 –230	66–85	231–350	86–99		
6	100–210	1–38	211–225	39–71	226 –239	72–91	240-350	92–99		
7	100–215	1–38	216–227	39–64	228 –244	65–89	245–350	90–99		
8	100–218	1–35	219–229	36–57	230 –246	58–85	247–350	86–99		
Spring										
2	100–183	1–40	184–197	41–73	198 –210	74–92	211–350	93–99		
3	100–196	1–44	197–208	45–71	209 –219	72–88	220-350	89–99		
4	100–208	1–47	209–219	48–70	220 –230	71–87	231–350	88–99		
5	100–209	1–36	210–222	37–64	223 –234	65–84	235–350	85–99		
6	100–214	1–38	215–229	39–69	230 –243	70–89	244–350	90–99		
7	100–218	1–39	219–230	40–63	231 –246	64–87	247–350	88–99		
8	100–221	1–36	222–232	37–57	233 –248	58–83	249–350	84–99		

Table 3.6. MAP Growth Cut Scores—ELA/Reading

Tuble of	0. 11.7 11		00100 2	LA/Reading STAAR EL				
Grade	Did N	ot Meet	Appr	oaches		eets	Ма	sters
3		–1344	• • •	5–1466		7 –1595		6–2120
4		–1413		1–1551		2 –1662		3–2210
5		-1474		5–1591		2 –1699)–2220
6		-1534		5–1633		4 –1748		9–2280
7		-1563		1–1668		9 –1770		1–2290
8		–1591		2–1697		3 –1802		3–2360
				AP Growth R				
	Did N	ot Meet		oaches		eets	Ма	sters
Grade	RIT	Percentile	RIT	Percentile	RIT	Percentile	RIT	Percentile
Fall							l.	
2	100–153	1–16	154–173	17–58	174 –190	59–88	191–350	89–99
3	100–171	1–23	172–187	24-56	188 –201	57–82	202–350	83–99
4	100–184	1–26	185–202	27–64	203 –212	65–82	213–350	83–99
5	100–192	1–26	193–206	27–57	207 –217	58–78	218–350	79–99
6	100–199	1–29	200–211	30–56	212 –223	57–80	224–350	81–99
7	100–200	1–24	201–213	25–53	214 –224	54–77	225–350	78–99
8	100–201	1–20	202–215	21–50	216 –226	51–74	227–350	75–99
Winter								
2	100–160	1–17	161–179	18–57	180 –196	58–87	197–350	88–99
3	100–177	1–25	178–192	26–56	193 –206	57–82	207–350	83–99
4	100–188	1–27	189–205	28–63	206 –215	64–81	216–350	82–99
5	100–195	1–26	196–208	27–55	209 –219	56–78	220–350	79–99
6	100–201	1–29	202–213	30–57	214 –224	58–79	225–350	80–99
7	100–202	1–25	203–214	26–52	215 –225	53–76	226–350	77–99
8	100–202	1–20	203–216	21–49	217 –227	50–73	228–350	74–99
Spring								
2	100–167	1–21	168–184	22–57	185 –199	58-84	200–350	85–99
3	100–182	1–27	183–196	28–56	197 –208	57–79	209–350	80–99
4	100–192	1–29	193–207	30–62	208 –216	63–79	217–350	80–99
5	100–198	1–28	199–210	29–55	211 –220	56–76	221–350	77–99
6	100–203	1–30	204–214	31–56	215 –225	57–79	226–350	80–99
7	100–204	1–27	205–215	28–52	216 –226	53–75	227–350	76–99
8	100–205	1–24	206–217	25–49	218 –228	50–73	229–350	74–99

Table 3.7. MAP Growth Cut Scores—Science

				OTA A D O :					
				STAAR Scie	nce				
Grade	Did N	lot Meet	Appr	oaches	М	eets	Ма	sters	
5	1140)–3549	3550)–3999	4000) –4379	4380	0–6200	
8	1000)–3549	3550)–3999	4000) –4618	4619–6800		
			M	AP Growth S	cience				
Grade	Did N	lot Meet	Appr	eets	Ма	sters			
Grade	RIT	Percentile	RIT	Percentile	RIT	Percentile	RIT	Percentile	
Fall									
5	100–201	1–52	202–213	53–83	214 –220	84–93	221–350	94–99	
8	100–205	1–39	206–218	40–73	219 –229	74–91	230–350	92–99	
Winter									
5	100–205	1–54	206–216	55–82	217 –223	83–92	224-350	93–99	
8	100–207	1–40	208–219	41–71	220 –230	72–90	231–350	91–99	
Spring									
5	100–207	1–53	208–217	54–78	218 –224	79–90	225–350	91–99	
8	100–209	1–42	210–220	43–70	221 –231	71–89	232–350	90–99	

3.4. Classification Accuracy

Table 3.8 presents the classification accuracy summary statistics, including the overall classification accuracy rates. These results indicate how well MAP Growth spring RIT scores predict proficiency on the STAAR spring summative tests, providing insight into the predictive validity of MAP Growth. The overall classification accuracy rates range from 0.82 to 0.88 for mathematics, 0.80 to 0.84 for ELA/reading, and 0.82 to 0.84 for science. These values suggest that the RIT cut scores are good at classifying students as proficient (*Meets Grade Level* or higher) or not proficient (*lower than Meets Grade Level*) on the STAAR summative assessments for all the subjects and grades.

Although the results show that MAP Growth scores can be used to predict student proficiency on the STAAR summative tests with relatively high accuracy, there is a notable limitation to how these results should be used and interpreted. The MAP Growth and STAAR summative assessments are designed for different purposes and measure slightly different constructs even within the same content area. Therefore, scores on these tests cannot be assumed to be interchangeable. MAP Growth may not be used as a substitute for the state tests and vice versa.

Table 3.8. Classification Accuracy Results

Grade	N	Cut S	Score	Class.	Ra	ate	Concitivity	Specificity	Bracicion	AUC
Grade	N	MAP	State	Accuracy	FP	FN	Sensitivity	Specificity	Precision	AU.
Mathen	natics									
3	7,584	206	1471	0.86	0.17	0.11	0.89	0.83	0.80	0.86
4	7,431	215	1557	0.87	0.15	0.11	0.89	0.85	0.84	0.87
5	7,505	220	1634	0.85	0.19	0.11	0.89	0.81	0.82	0.85
6	7,354	227	1745	0.88	0.13	0.11	0.89	0.87	0.80	0.88
7	7,308	228	1793	0.87	0.13	0.12	0.88	0.87	0.78	0.87
8	5,434	229	1859	0.82	0.15	0.21	0.79	0.85	0.80	0.82
ELA/Re	ading									
3	8,037	197	1467	0.80	0.21	0.19	0.81	0.79	0.80	0.80
4	6,871	208	1552	0.82	0.18	0.18	0.82	0.82	0.80	0.82
5	6,735	211	1592	0.83	0.22	0.13	0.87	0.78	0.83	0.82
6	6,870	215	1634	0.82	0.20	0.15	0.85	0.80	0.81	0.82
7	7,100	216	1669	0.84	0.20	0.12	0.88	0.80	0.83	0.84
8	5,971	218	1698	0.83	0.25	0.12	0.88	0.75	0.82	0.82
Science	9									
5	7,138	218	4000	0.84	0.12	0.23	0.77	0.88	0.77	0.83
8	7,093	221	4000	0.82	0.16	0.21	0.79	0.84	0.80	0.81

Note. Class. Accuracy = overall classification accuracy rate; FP = false positives; FN = false negatives; AUC = area under the ROC curve.

3.5. Proficiency Projections

Table 3.9 to Table 3.11 present the estimated probability of achieving *Meets Grade Level* or higher on the STAAR summative tests based on RIT scores from fall, winter, or spring. Due to measurement errors in all test scores, the *Meets Grade Level* MAP Growth cuts do not guarantee that a student will reach proficiency on the STAAR summative tests. Instead, they indicate a 50% chance that a student will reach proficiency. Therefore, these projections further elucidate the *Meets Grade Level* cut scores by providing the likelihood of reaching proficiency on the STAAR spring summative assessments at a given percentile throughout the year. For example, a grade 3 student at percentile 75 who obtained a MAP Growth mathematics score of 195 in the fall has a 55% chance of reaching proficiency on the STAAR in spring. Additionally, an educator can also use the table to estimate that a grade 3 student who obtained a MAP Growth mathematics score of 206 in the winter has a 66% probability ("Prob.") of reaching *Meets Grade Level* or higher on the STAAR mathematics spring summative assessment.

Table 3.9. Proficiency Projections Based on RIT Scores—Mathematics

	011	0		Fall			Winter			Spring	
Grade	Start Percentile	Spring Cut	Fall	Projected I	Proficiency	Winter	Projected F	Proficiency	Spring	Projected I	Proficiency
	reiceillie	Cut	RIT	Meets	Prob.	RIT	Meets	Prob.	RIT	Meets	Prob.
	5	198	147	No	<0.01	155	No	<0.01	161	No	<0.01
	10	198	153	No	<0.01	161	No	<0.01	167	No	<0.01
	15	198	157	No	<0.01	165	No	<0.01	171	No	<0.01
	20	198	160	No	<0.01	168	No	<0.01	174	No	<0.01
	25	198	162	No	0.01	171	No	<0.01	177	No	<0.01
	30	198	165	No	0.01	173	No	0.01	179	No	<0.01
	35	198	167	No	0.03	175	No	0.02	181	No	<0.01
	40	198	169	No	0.04	177	No	0.03	183	No	<0.01
	45	198	171	No	0.07	179	No	0.04	185	No	<0.01
2	50	198	173	No	0.11	181	No	0.07	187	No	<0.01
	55	198	175	No	0.14	183	No	0.12	189	No	0.01
	60	198	177	No	0.2	185	No	0.18	192	No	0.04
	65	198	179	No	0.27	187	No	0.25	194	No	0.13
	70	198	181	No	0.36	189	No	0.3	196	No	0.28
	75	198	183	No	0.45	192	No	0.45	198	Yes	0.5
	80	198	186	Yes	0.55	194	Yes	0.55	201	Yes	0.8
	85	198	189	Yes	0.69	197	Yes	0.7	204	Yes	0.96
	90	198	193	Yes	0.8	201	Yes	0.82	208	Yes	>0.99
	95	198	198	Yes	0.93	207	Yes	0.96	214	Yes	>0.99
	5	209	158	No	<0.01	166	No	<0.01	171	No	<0.01
	10	209	164	No	<0.01	172	No	<0.01	177	No	<0.01
	15	209	168	No	<0.01	176	No	<0.01	181	No	<0.01
	20	209	171	No	<0.01	179	No	<0.01	185	No	<0.01
3	25	209	174	No	0.01	182	No	<0.01	188	No	<0.01
	30	209	176	No	0.01	184	No	0.01	190	No	<0.01
	35	209	178	No	0.02	186	No	0.01	193	No	<0.01
	40	209	180	No	0.04	189	No	0.04	195	No	<0.01
	45	209	182	No	0.06	191	No	0.06	197	No	<0.01

	011	0		Fall			Winter			Spring	
Grade	Start Percentile	Spring Cut	Fall	Projected F	Proficiency	Winter	Projected F	Proficiency	Spring	Projected I	Proficiency
	reiceittie	Cut	RIT	Meets	Prob.	RIT	Meets	Prob.	RIT	Meets	Prob.
	50	209	184	No	0.1	193	No	0.08	199	No	<0.01
	55	209	186	No	0.15	195	No	0.13	201	No	0.01
	60	209	188	No	0.22	197	No	0.2	203	No	0.04
	65	209	190	No	0.3	199	No	0.29	206	No	0.2
	70	209	192	No	0.4	201	No	0.39	208	No	0.39
	75	209	195	Yes	0.55	204	Yes	0.55	211	Yes	0.72
	80	209	197	Yes	0.65	206	Yes	0.66	213	Yes	0.87
	85	209	200	Yes	0.78	210	Yes	8.0	217	Yes	0.99
	90	209	204	Yes	0.9	214	Yes	0.92	221	Yes	>0.99
	95	209	210	Yes	0.97	220	Yes	0.99	227	Yes	>0.99
	5	220	171	No	<0.01	176	No	<0.01	180	No	<0.01
	10	220	177	No	<0.01	183	No	<0.01	187	No	<0.01
	15	220	181	No	<0.01	187	No	<0.01	191	No	<0.01
	20	220	184	No	<0.01	190	No	<0.01	195	No	<0.01
	25	220	186	No	<0.01	193	No	<0.01	198	No	<0.01
	30	220	189	No	0.01	196	No	0.01	201	No	<0.01
	35	220	191	No	0.02	198	No	0.01	203	No	<0.01
	40	220	193	No	0.04	200	No	0.02	206	No	<0.01
	45	220	195	No	0.07	202	No	0.04	208	No	<0.01
4	50	220	197	No	0.11	204	No	0.08	210	No	<0.01
	55	220	199	No	0.16	207	No	0.16	212	No	0.01
	60	220	201	No	0.23	209	No	0.2	215	No	0.08
	65	220	203	No	0.31	211	No	0.28	217	No	0.2
	70	220	205	No	0.4	213	No	0.39	220	Yes	0.5
	75	220	208	Yes	0.55	216	Yes	0.56	222	Yes	0.72
	80	220	210	Yes	0.65	219	Yes	0.72	225	Yes	0.92
	85	220	214	Yes	0.81	222	Yes	0.84	229	Yes	0.99
	90	220	217	Yes	0.89	226	Yes	0.94	233	Yes	>0.99
	95	220	223	Yes	0.98	232	Yes	0.99	240	Yes	>0.99

	011	0		Fall			Winter			Spring	
Grade	Start Percentile	Spring Cut	Fall	Projected F	Proficiency	Winter	Projected F	Proficiency	Spring	Projected I	Proficiency
	reiceillie	Cut	RIT	Meets	Prob.	RIT	Meets	Prob.	RIT	Meets	Prob.
	5	223	180	No	<0.01	183	No	<0.01	186	No	<0.01
	10	223	185	No	<0.01	189	No	<0.01	192	No	<0.01
	15	223	189	No	<0.01	194	No	<0.01	197	No	<0.01
	20	223	193	No	<0.01	197	No	<0.01	200	No	<0.01
	25	223	195	No	0.01	200	No	<0.01	204	No	<0.01
	30	223	198	No	0.03	203	No	0.01	206	No	<0.01
	35	223	200	No	0.05	205	No	0.02	209	No	<0.01
	40	223	202	No	80.0	207	No	0.04	211	No	<0.01
	45	223	204	No	0.12	210	No	0.1	214	No	0.01
5	50	223	206	No	0.19	212	No	0.16	216	No	0.02
	55	223	208	No	0.26	214	No	0.24	218	No	0.08
	60	223	210	No	0.35	216	No	0.33	221	No	0.28
	65	223	212	No	0.45	219	Yes	0.5	223	Yes	0.5
	70	223	215	Yes	0.6	221	Yes	0.61	226	Yes	8.0
	75	223	217	Yes	0.7	224	Yes	0.76	228	Yes	0.92
	80	223	220	Yes	0.81	226	Yes	0.84	232	Yes	0.99
	85	223	223	Yes	0.9	230	Yes	0.94	235	Yes	>0.99
	90	223	227	Yes	0.96	234	Yes	0.98	240	Yes	>0.99
	95	223	233	Yes	>0.99	240	Yes	>0.99	246	Yes	>0.99
	5	230	184	No	<0.01	187	No	<0.01	190	No	<0.01
	10	230	190	No	<0.01	194	No	<0.01	197	No	<0.01
	15	230	194	No	<0.01	198	No	<0.01	201	No	<0.01
	20	230	197	No	<0.01	201	No	<0.01	205	No	<0.01
6	25	230	199	No	<0.01	204	No	<0.01	208	No	<0.01
6	30	230	202	No	0.01	207	No	0.01	211	No	<0.01
	35	230	204	No	0.02	209	No	0.01	213	No	<0.01
	40	230	206	No	0.04	212	No	0.03	216	No	<0.01
	45	230	208	No	0.07	214	No	0.05	218	No	<0.01
	50	230	210	No	0.11	216	No	0.09	220	No	<0.01

	011	0		Fall			Winter			Spring	
Grade	Start Percentile	Spring Cut	Fall	Projected	Proficiency	Winter	Projected I	Proficiency	Spring	Projected I	Proficiency
	rercentile	Cut	RIT	Meets	Prob.	RIT	Meets	Prob.	RIT	Meets	Prob.
	55	230	212	No	0.16	218	No	0.14	223	No	0.02
	60	230	214	No	0.23	220	No	0.21	225	No	80.0
	65	230	216	No	0.31	223	No	0.34	227	No	0.2
	70	230	219	No	0.45	225	No	0.45	230	Yes	0.5
	75	230	221	Yes	0.6	228	Yes	0.61	233	Yes	8.0
	80	230	224	Yes	0.73	231	Yes	0.75	236	Yes	0.96
	85	230	227	Yes	0.84	234	Yes	0.86	239	Yes	0.99
	90	230	231	Yes	0.93	238	Yes	0.95	244	Yes	>0.99
	95	230	237	Yes	0.99	245	Yes	>0.99	251	Yes	>0.99
	5	230	189	No	<0.01	191	No	<0.01	192	No	<0.01
	10	230	195	No	<0.01	197	No	<0.01	199	No	<0.01
	15	230	199	No	<0.01	202	No	<0.01	204	No	<0.01
	20	230	203	No	0.01	206	No	<0.01	208	No	<0.01
	25	230	206	No	0.02	209	No	0.01	211	No	<0.01
	30	230	208	No	0.03	211	No	0.02	214	No	<0.01
	35	230	211	No	0.07	214	No	0.04	216	No	<0.01
	40	230	213	No	0.11	216	No	0.07	219	No	<0.01
	45	230	215	No	0.17	219	No	0.15	221	No	0.01
7	50	230	217	No	0.23	221	No	0.22	224	No	0.04
	55	230	219	No	0.31	223	No	0.3	226	No	0.13
	60	230	222	No	0.45	226	No	0.45	229	No	0.39
	65	230	224	Yes	0.55	228	Yes	0.55	231	Yes	0.61
	70	230	226	Yes	0.64	231	Yes	0.65	234	Yes	0.87
	75	230	229	Yes	0.77	233	Yes	0.74	237	Yes	0.98
	80	230	232	Yes	0.86	236	Yes	0.85	240	Yes	>0.99
	85	230	235	Yes	0.93	240	Yes	0.94	244	Yes	>0.99
	90	230	239	Yes	0.97	245	Yes	0.99	249	Yes	>0.99
	95	230	246	Yes	>0.99	251	Yes	>0.99	256	Yes	>0.99
8	5	233	192	No	<0.01	194	No	<0.01	196	No	<0.01

	0 , ,			Fall			Winter			Spring	
Grade	Start Percentile	Spring Cut	Fall	Projected I	Proficiency	Winter	Projected F	Proficiency	Spring	Projected I	Proficiency
	rercentile	Out	RIT	Meets	Prob.	RIT	Meets	Prob.	RIT	Meets	Prob.
	10	233	199	No	<0.01	201	No	<0.01	203	No	<0.01
	15	233	203	No	<0.01	206	No	<0.01	208	No	<0.01
	20	233	207	No	0.01	210	No	0.01	212	No	<0.01
	25	233	210	No	0.03	213	No	0.02	215	No	<0.01
	30	233	212	No	0.05	216	No	0.04	218	No	<0.01
	35	233	215	No	0.1	219	No	0.08	221	No	<0.01
	40	233	217	No	0.15	221	No	0.13	224	No	0.01
	45	233	220	No	0.25	224	No	0.23	226	No	0.02
	50	233	222	No	0.32	226	No	0.31	229	No	0.13
	55	233	224	No	0.41	228	No	0.4	231	No	0.28
	60	233	227	Yes	0.55	231	Yes	0.55	234	Yes	0.61
	65	233	229	Yes	0.63	233	Yes	0.65	237	Yes	0.87
	70	233	232	Yes	0.75	236	Yes	0.77	239	Yes	0.96
	75	233	234	Yes	0.82	239	Yes	0.84	242	Yes	0.99
	80	233	237	Yes	0.9	242	Yes	0.92	246	Yes	>0.99
	85	233	241	Yes	0.96	246	Yes	0.97	250	Yes	>0.99
	90	233	246	Yes	0.99	251	Yes	0.99	255	Yes	>0.99
	95	233	252	Yes	>0.99	258	Yes	>0.99	262	Yes	>0.99

Table 3.10. Proficiency Projections Based on RIT Scores—ELA/Reading

	01 1			Fall			Winter			Spring	
Grade	Start Percentile	Spring Cut	Fall	Projected F	Proficiency	Winter	Projected F	Proficiency	RIT	Projected F	Proficiency
	reiceillie	Cut	RIT	Meets	Prob.	RIT	Meets	Prob.	KII	Meets	Prob.
	5	185	142	No	<0.01	149	No	<0.01	153	No	<0.01
	10	185	148	No	0.01	155	No	<0.01	159	No	<0.01
	15	185	152	No	0.02	159	No	0.01	164	No	<0.01
	20	185	156	No	0.05	162	No	0.03	167	No	<0.01
	25	185	159	No	0.07	165	No	0.05	170	No	<0.01
	30	185	161	No	0.11	168	No	0.09	173	No	<0.01
	35	185	163	No	0.16	170	No	0.14	175	No	<0.01
	40	185	166	No	0.22	172	No	0.2	177	No	0.01
	45	185	168	No	0.29	175	No	0.27	180	No	0.08
2	50	185	170	No	0.37	177	No	0.36	182	No	0.2
	55	185	172	No	0.41	179	No	0.45	184	No	0.39
	60	185	174	Yes	0.5	181	Yes	0.5	186	Yes	0.61
	65	185	177	Yes	0.63	183	Yes	0.59	188	Yes	8.0
	70	185	179	Yes	0.67	186	Yes	0.73	191	Yes	0.96
	75	185	182	Yes	0.78	188	Yes	0.8	193	Yes	0.99
	80	185	184	Yes	0.84	191	Yes	0.86	196	Yes	>0.99
	85	185	188	Yes	0.91	194	Yes	0.93	200	Yes	>0.99
	90	185	192	Yes	0.96	199	Yes	0.97	204	Yes	>0.99
	95	185	198	Yes	0.99	205	Yes	>0.99	210	Yes	>0.99
	5	197	155	No	<0.01	160	No	<0.01	164	No	<0.01
	10	197	161	No	<0.01	167	No	<0.01	171	No	<0.01
	15	197	166	No	0.02	171	No	0.01	175	No	<0.01
	20	197	169	No	0.03	175	No	0.03	179	No	<0.01
3	25	197	172	No	0.06	178	No	0.05	182	No	<0.01
	30	197	175	No	0.09	180	No	80.0	184	No	<0.01
	35	197	178	No	0.16	183	No	0.14	187	No	<0.01
	40	197	180	No	0.22	185	No	0.17	189	No	0.01
	45	197	182	No	0.25	188	No	0.27	192	No	0.08

	044	0		Fall			Winter			Spring	
Grade	Start Percentile	Spring Cut	Fall	Projected F	Proficiency	Winter	Projected F	Proficiency	RIT	Projected I	Proficiency
	rercentile	Cut	RIT	Meets	Prob.	RIT	Meets	Prob.	KII	Meets	Prob.
	50	197	185	No	0.37	190	No	0.36	194	No	0.2
	55	197	187	No	0.46	192	No	0.45	196	No	0.39
	60	197	189	Yes	0.54	194	Yes	0.5	198	Yes	0.61
	65	197	192	Yes	0.63	197	Yes	0.64	201	Yes	0.87
	70	197	194	Yes	0.71	199	Yes	0.73	203	Yes	0.96
	75	197	197	Yes	0.78	202	Yes	0.83	206	Yes	0.99
	80	197	200	Yes	0.87	205	Yes	0.88	209	Yes	>0.99
	85	197	204	Yes	0.93	209	Yes	0.95	213	Yes	>0.99
	90	197	208	Yes	0.97	213	Yes	0.98	217	Yes	>0.99
	95	197	215	Yes	>0.99	220	Yes	>0.99	224	Yes	>0.99
	5	208	166	No	<0.01	170	No	<0.01	173	No	<0.01
	10	208	173	No	<0.01	177	No	<0.01	179	No	<0.01
	15	208	177	No	<0.01	181	No	<0.01	184	No	<0.01
	20	208	181	No	0.01	184	No	0.01	187	No	<0.01
	25	208	184	No	0.03	187	No	0.02	190	No	<0.01
	30	208	186	No	0.04	190	No	0.04	193	No	<0.01
	35	208	189	No	80.0	193	No	0.07	195	No	<0.01
	40	208	191	No	0.12	195	No	0.1	198	No	<0.01
	45	208	194	No	0.17	197	No	0.16	200	No	0.01
4	50	208	196	No	0.24	199	No	0.23	202	No	0.04
	55	208	198	No	0.32	202	No	0.31	204	No	0.13
	60	208	200	No	0.41	204	No	0.4	207	No	0.39
	65	208	203	Yes	0.5	206	Yes	0.5	209	Yes	0.61
	70	208	205	Yes	0.59	209	Yes	0.65	211	Yes	0.8
	75	208	208	Yes	0.72	211	Yes	0.69	214	Yes	0.96
	80	208	211	Yes	0.8	214	Yes	0.81	217	Yes	0.99
	85	208	215	Yes	0.9	218	Yes	0.92	220	Yes	>0.99
	90	208	219	Yes	0.95	222	Yes	0.97	225	Yes	>0.99
	95	208	226	Yes	0.99	229	Yes	>0.99	231	Yes	>0.99

	04 1	0		Fall			Winter			Spring	
Grade	Start Percentile	Spring Cut	Fall	Projected F	Proficiency	Winter	Projected F	Proficiency	DIT	Projected F	Proficiency
	reiceillie	Cut	RIT	Meets	Prob.	RIT	Meets	Prob.	RIT	Meets	Prob.
	5	211	175	No	<0.01	178	No	<0.01	180	No	<0.01
	10	211	181	No	<0.01	184	No	<0.01	186	No	<0.01
	15	211	186	No	0.01	189	No	0.01	191	No	<0.01
	20	211	189	No	0.03	192	No	0.03	194	No	<0.01
	25	211	192	No	0.06	195	No	0.05	197	No	<0.01
	30	211	195	No	0.11	197	No	80.0	199	No	<0.01
	35	211	197	No	0.16	200	No	0.15	202	No	0.01
	40	211	199	No	0.2	202	No	0.22	204	No	0.02
	45	211	201	No	0.27	204	No	0.26	206	No	80.0
5	50	211	204	No	0.4	206	No	0.35	208	No	0.2
	55	211	206	No	0.45	209	Yes	0.5	211	Yes	0.5
	60	211	208	Yes	0.55	211	Yes	0.55	213	Yes	0.72
	65	211	210	Yes	0.64	213	Yes	0.65	215	Yes	0.87
	70	211	213	Yes	0.73	215	Yes	0.74	217	Yes	0.96
	75	211	215	Yes	8.0	218	Yes	0.85	220	Yes	0.99
	80	211	218	Yes	0.89	221	Yes	0.92	223	Yes	>0.99
	85	211	222	Yes	0.94	224	Yes	0.96	226	Yes	>0.99
	90	211	226	Yes	0.98	228	Yes	0.99	230	Yes	>0.99
	95	211	232	Yes	>0.99	235	Yes	>0.99	237	Yes	>0.99
	5	215	181	No	<0.01	183	No	<0.01	185	No	<0.01
	10	215	187	No	<0.01	189	No	<0.01	191	No	<0.01
	15	215	191	No	0.01	193	No	0.01	195	No	<0.01
	20	215	195	No	0.03	197	No	0.03	198	No	<0.01
6	25	215	198	No	0.07	199	No	0.05	201	No	<0.01
6	30	215	200	No	0.09	202	No	80.0	203	No	<0.01
	35	215	202	No	0.14	204	No	0.13	206	No	0.01
	40	215	205	No	0.23	206	No	0.19	208	No	0.02
	45	215	207	No	0.27	209	No	0.31	210	No	80.0
	50	215	209	No	0.36	211	No	0.35	212	No	0.2

	04 1	0		Fall			Winter			Spring]
Grade	Start Percentile	Spring Cut	Fall	Projected F	Proficiency	Winter	Projected F	Proficiency	DIT	Projected I	Proficiency
	reiceillie	Cut	RIT	Meets	Prob.	RIT	Meets	Prob.	RIT	Meets	Prob.
	55	215	211	No	0.45	213	No	0.45	214	No	0.39
	60	215	213	Yes	0.55	215	Yes	0.55	216	Yes	0.61
	65	215	215	Yes	0.6	217	Yes	0.65	218	Yes	8.0
	70	215	218	Yes	0.73	219	Yes	0.74	221	Yes	0.96
	75	215	220	Yes	0.8	222	Yes	0.84	223	Yes	0.99
	80	215	223	Yes	0.89	225	Yes	0.92	226	Yes	>0.99
	85	215	226	Yes	0.94	228	Yes	0.96	229	Yes	>0.99
	90	215	231	Yes	0.99	232	Yes	0.99	233	Yes	>0.99
	95	215	237	Yes	>0.99	238	Yes	>0.99	239	Yes	>0.99
	5	216	185	No	<0.01	186	No	<0.01	187	No	<0.01
	10	216	191	No	0.01	192	No	0.01	193	No	<0.01
	15	216	195	No	0.03	196	No	0.02	197	No	<0.01
	20	216	198	No	0.05	200	No	0.06	201	No	<0.01
	25	216	201	No	0.1	202	No	0.07	203	No	<0.01
	30	216	204	No	0.18	205	No	0.14	206	No	<0.01
	35	216	206	No	0.21	207	No	0.2	208	No	0.01
	40	216	208	No	0.28	210	No	0.31	211	No	0.08
	45	216	210	No	0.36	212	No	0.36	213	No	0.2
7	50	216	212	No	0.45	214	No	0.45	215	No	0.39
	55	216	214	Yes	0.5	216	Yes	0.55	217	Yes	0.61
	60	216	217	Yes	0.64	218	Yes	0.64	219	Yes	8.0
	65	216	219	Yes	0.72	220	Yes	0.73	221	Yes	0.92
	70	216	221	Yes	0.79	223	Yes	0.84	224	Yes	0.99
	75	216	224	Yes	0.88	225	Yes	0.89	226	Yes	>0.99
	80	216	226	Yes	0.92	228	Yes	0.94	229	Yes	>0.99
	85	216	230	Yes	0.97	231	Yes	0.97	232	Yes	>0.99
	90	216	234	Yes	0.99	235	Yes	0.99	237	Yes	>0.99
	95	216	240	Yes	>0.99	241	Yes	>0.99	243	Yes	>0.99
8	5	218	188	No	<0.01	189	No	<0.01	190	No	<0.01

Grade	Start Percentile	Spring Cut	Fall			Winter			Spring		
			Fall Projected Proficiency		Proficiency	Winter	Projected F	Proficiency	RIT	Projected Proficiency	
			RIT	Meets	Prob.	RIT	Meets	Prob.	KII	Meets	Prob.
	10	218	194	No	0.02	195	No	0.01	196	No	<0.01
	15	218	198	No	0.04	199	No	0.03	200	No	<0.01
	20	218	201	No	0.07	203	No	80.0	203	No	<0.01
	25	218	204	No	0.13	205	No	0.1	206	No	<0.01
	30	218	207	No	0.18	208	No	0.17	209	No	0.01
	35	218	209	No	0.25	210	No	0.24	211	No	0.02
	40	218	211	No	0.33	213	No	0.32	213	No	80.0
	45	218	214	No	0.41	215	No	0.41	216	No	0.28
	50	218	216	Yes	0.5	217	Yes	0.5	218	Yes	0.5
	55	218	218	Yes	0.59	219	Yes	0.59	220	Yes	0.72
	60	218	220	Yes	0.67	221	Yes	0.68	222	Yes	0.87
	65	218	222	Yes	0.75	223	Yes	0.76	224	Yes	0.96
	70	218	225	Yes	0.85	226	Yes	0.86	227	Yes	0.99
	75	218	227	Yes	0.89	228	Yes	0.9	229	Yes	>0.99
	80	218	230	Yes	0.94	231	Yes	0.95	232	Yes	>0.99
	85	218	233	Yes	0.97	235	Yes	0.98	236	Yes	>0.99
	90	218	238	Yes	0.99	239	Yes	>0.99	240	Yes	>0.99
	95	218	244	Yes	>0.99	245	Yes	>0.99	246	Yes	>0.99

Table 3.11. Proficiency Projections Based on RIT Scores—Science

Grade	Start Percentile	Spring Cut	Fall			Winter			Spring		
			Fall Projected Proficience		Proficiency	Winter Projected Proficiency			RIT	Projected Proficiency	
			RIT	Meets	Prob.	RIT	Meets	Prob.	KII	Meets	Prob.
	5	218	179	No	<0.01	182	No	<0.01	184	No	<0.01
	10	218	184	No	<0.01	187	No	<0.01	189	No	<0.01
	15	218	187	No	<0.01	190	No	<0.01	192	No	<0.01
	20	218	190	No	<0.01	193	No	<0.01	195	No	<0.01
	25	218	192	No	<0.01	195	No	<0.01	197	No	<0.01
	30	218	194	No	0.01	197	No	<0.01	199	No	<0.01
	35	218	196	No	0.01	199	No	0.01	201	No	<0.01
	40	218	198	No	0.03	201	No	0.02	203	No	<0.01
	45	218	199	No	0.04	203	No	0.04	205	No	<0.01
5	50	218	201	No	0.07	204	No	0.04	207	No	<0.01
	55	218	203	No	0.09	206	No	0.07	208	No	<0.01
	60	218	204	No	0.11	208	No	0.12	210	No	0.01
	65	218	206	No	0.17	209	No	0.15	212	No	0.04
	70	218	208	No	0.25	211	No	0.23	214	No	0.13
	75	218	210	No	0.34	213	No	0.33	216	No	0.28
	80	218	212	No	0.45	216	No	0.44	218	Yes	0.5
	85	218	215	Yes	0.55	218	Yes	0.56	221	Yes	8.0
	90	218	218	Yes	0.71	221	Yes	0.72	224	Yes	0.96
	95	218	223	Yes	0.86	226	Yes	0.91	229	Yes	>0.99
	5	221	186	No	<0.01	187	No	<0.01	188	No	<0.01
	10	221	191	No	<0.01	193	No	<0.01	194	No	<0.01
	15	221	195	No	<0.01	196	No	<0.01	197	No	<0.01
8	20	221	198	No	0.01	199	No	0.01	200	No	<0.01
	25	221	200	No	0.02	202	No	0.01	203	No	<0.01
	30	221	202	No	0.03	204	No	0.02	205	No	<0.01
	35	221	204	No	0.05	206	No	0.04	207	No	<0.01
	40	221	206	No	0.08	208	No	0.07	209	No	<0.01
	45	221	208	No	0.1	210	No	0.11	211	No	<0.01

Grade	Start Percentile	Spring Cut	Fall			Winter			Spring		
			Fall	Projected Proficiency		Winter	Projected Proficiency		RIT	Projected Proficiency	
			RIT	Meets	Prob.	RIT	Meets	Prob.	KII	Meets	Prob.
	50	221	210	No	0.16	211	No	0.11	213	No	0.01
	55	221	211	No	0.19	213	No	0.17	215	No	0.04
	60	221	213	No	0.26	215	No	0.25	217	No	0.13
	65	221	215	No	0.35	217	No	0.34	219	No	0.28
	70	221	217	No	0.4	219	No	0.45	221	Yes	0.5
	75	221	219	Yes	0.5	221	Yes	0.55	223	Yes	0.72
	80	221	222	Yes	0.65	224	Yes	0.7	226	Yes	0.92
	85	221	224	Yes	0.74	227	Yes	0.83	228	Yes	0.98
	90	221	228	Yes	0.87	230	Yes	0.91	232	Yes	>0.99
	95	221	233	Yes	0.96	236	Yes	0.98	238	Yes	>0.99

References

- Kolen, M. J., & Brennan, R. L. (2004). *Test equating, scaling, and linking: Methods and practices* (2nd ed.). Springer. https://doi.org/10.1007/978-1-4939-0317-7
- Lewis, K., & Kuhfeld, M. (2024). *MAP Growth with enhanced item-selection algorithm: Updates on score comparability*. NWEA Research Report. NWEA.

 https://www.nwea.org/uploads/Research-MAP-Growth-with-enhanced-item-selection-algorithm-updates-on-score-compatibility NWEA Research Guide.pdf
- Lumley, T. (2019). *Survey: Analysis of complex survey samples*. (R package version 3.36) [Computer software]. Available from https://CRAN.R-project.org/package=survey.
- Meyer, J. P., Hu, A. H., & Li, S. (2023). *Content Proximity Spring 2022 Pilot Study Research Brief.* NWEA Research Report. NWEA. https://www.nwea.org/uploads/Content-Proximity-Project-and-Pilot-Study-Spring-2022-Research-Report.pdf
- NWEA. (2025). *MAP Growth achievement status and growth norms for students and schools*. [Tech Rep.]. NWEA.
- Pommerich, M., Hanson, B., Harris, D., & Sconing, J. (2004). Issues in conducting linkage between distinct tests. *Applied Psychological Measurement*, 28(4), 247–273. https://doi.org/10.1177/0146621604265033