# Predicting Performance on the Smarter Balanced Summative Assessments Based on NWEA MAP Growth Scores

July 2025

NWEA Psychometrics and Analytics



# **Linking Study Updates**

| Date    | Description                                                                                                            |
|---------|------------------------------------------------------------------------------------------------------------------------|
| 2021-03 | Conducted a linking study for grades 3–8 in mathematics and ELA/literacy based on the 2020 norms and Spring 2019 data. |
| 2025-07 | Updated the linking study based on the 2025 norms.                                                                     |

**Acknowledgements:** This report was made possible with the contributions of Yan Zhou, Ann Hu, Justin Schreiber, Christopher Wells, and Derek May. We appreciate our colleagues at NWEA and all our partners who provided data for the study.

© 2025 NWEA. NWEA and MAP Growth are registered trademarks of NWEA in the U.S. and in other countries. All rights reserved. No part of this document may be modified or further distributed without written permission from NWEA.

# **Table of Contents**

| Executive Summary                                                                | 1  |
|----------------------------------------------------------------------------------|----|
| 1. Introduction                                                                  | 5  |
| 1.1. Purpose of the Study                                                        | 5  |
| 1.2. Assessment Overview                                                         |    |
| 2. Methods                                                                       | 6  |
| 2.1. Data Collection                                                             |    |
| 2.2. Post-Stratification Weighting                                               |    |
| 2.3. MAP Growth Cut Scores                                                       |    |
| 2.4. Classification Accuracy                                                     | 7  |
| 2.5. Proficiency Projections                                                     | 8  |
| 3. Results                                                                       | 9  |
| 3.1. Study Sample                                                                |    |
| 3.2. Descriptive Statistics                                                      |    |
| 3.3. MAP Growth Cut Scores                                                       |    |
| 3.4. Classification Accuracy                                                     | 17 |
| 3.5. Post-Hoc Analyses                                                           | 19 |
| 3.6. Proficiency Projections                                                     | 19 |
| References                                                                       | 30 |
| List of Tables                                                                   |    |
| Table E.1. MAP Growth Cut Scores for SBAC Proficiency                            |    |
| Table E.2. MAP Growth RIT Linking Study Sample                                   |    |
| Table 2.1. Description of Classification Accuracy Summary Statistics             |    |
| Table 3.1. Linking Study Sample Demographics (Unweighted)                        |    |
| Table 3.2. Spring 2019 SBAC Linking Study Sample Student Population Demographics |    |
| Table 3.3. Linking Study Sample Demographics (Weighted)                          |    |
| Table 3.5. MAP Growth Cut Scores—ELA/Reading                                     |    |
| Table 3.6. MAP Growth Cut Scores—Mathematics                                     |    |
| Table 3.7. Classification Accuracy Results                                       |    |
| Table 3.8. Proficiency Projection Based on RIT Scores—ELA/Reading                |    |
| Table 3.9. Proficiency Projection Based on RIT Scores—Mathematics                |    |
| List of Figures                                                                  |    |
|                                                                                  |    |
| Figure E.1. Correlations Between MAP Growth and SBAC Test Scores                 |    |

# **Executive Summary**

To predict student achievement on the Smarter Balanced Assessment Consortium (SBAC) summative assessments in grades 3–8 in English language arts/literacy (ELA) and mathematics, NWEA® conducted a linking study using Spring 2019 data to derive Rasch Unit (RIT) cut scores on the MAP® Growth™ assessments that correspond to the SBAC achievement levels. Educators can use the RIT score cuts to identify students at risk of not meeting state proficiency standards early in the year and provide tailored educational interventions. The linking study has been updated since the previous version published in March 2021 to incorporate the most recent 2025 NWEA MAP Growth norms (NWEA, 2025).

This linking study is based on data from the following nine states: California, Connecticut, Delaware, Hawaii, Idaho, Nevada, Oregon, South Dakota, and Washington. Although any of these nine states could use the results of this report, it is recommended for states to reference their state-specific linking study results if available (i.e., California, Nevada, Oregon, South Dakota, and Washington). Caution should be taken when applying the results to SBAC states that had no data included in this study (e.g., Montana, Vermont). The accuracy of using the cut scores in this report for states not included in the study is unknown.

Table E.1 presents the SBAC Level 3 achievement level cut scores and the corresponding MAP Growth RIT cut scores that allow teachers to identify students who are on track for proficiency on the state summative test and those who are not. For example, the Level 3 cut score on the SBAC grade 3 ELA test is 2432. A grade 3 student with a MAP Growth reading RIT score of 191 in the fall is likely to meet proficiency on the SBAC ELA test in the spring, whereas a grade 3 student with a MAP Growth reading RIT score lower than 191 in the fall is in jeopardy of not meeting proficiency. MAP Growth cut scores for grade 2 are also provided so that educators can track early learners' progress toward proficiency on the SBAC test by grade 3.

Table E.1. MAP Growth Cut Scores for SBAC Proficiency

| Assessment             |           | Level 3 Cut Scores by Grade |      |      |      |      |      |      |  |  |
|------------------------|-----------|-----------------------------|------|------|------|------|------|------|--|--|
| Assessine              | 2         | 3                           | 4    | 5    | 6    | 7    | 8    |      |  |  |
| ELA/Reading            |           |                             |      |      |      |      |      |      |  |  |
| Grades 3–8 SB          | AC Spring | _                           | 2432 | 2473 | 2502 | 2531 | 2552 | 2567 |  |  |
|                        | Fall      | 176                         | 191  | 200  | 207  | 213  | 216  | 220  |  |  |
| MAP Growth<br>Reading  | Winter    | 183                         | 196  | 204  | 209  | 215  | 217  | 221  |  |  |
| rteading               | Spring    | 187                         | 199  | 206  | 211  | 216  | 218  | 222  |  |  |
| Mathematics            |           |                             |      |      |      |      |      |      |  |  |
| Grades 3-8 SB          | AC Spring | -                           | 2436 | 2485 | 2528 | 2552 | 2567 | 2586 |  |  |
|                        | Fall      | 177                         | 188  | 205  | 217  | 220  | 227  | 234  |  |  |
| MAP Growth Mathematics | Winter    | 185                         | 197  | 213  | 223  | 226  | 232  | 239  |  |  |
| Matricillatics         | Spring    | 191                         | 203  | 218  | 227  | 230  | 234  | 241  |  |  |

Please note that the results in this report may differ from those found in the NWEA reporting system for individual districts. The typical growth scores from fall to spring or winter to spring used in this report are based on the default instructional weeks most encountered for each term

<sup>&</sup>lt;sup>1</sup> The data collected from Michigan could not be used in this study because the state scale scores are not on the SBAC scale. As a result, Michigan should refer to its own linking study results.

(i.e., Weeks 4, 20, and 32 for fall, winter, and spring, respectively). However, instructional weeks often vary by district, so the cut scores in this report may differ slightly from the MAP Growth score reports that reflect the specific instructional weeks set by partners.

#### E.1. Assessment Overview

The SBAC grades 3–8 ELA and mathematics summative tests are aligned to the Common Core State Standards (CCSS) and are administered in multiple states as their end-of-year state summative assessment. Based on their test scores, students are placed into one of four achievement levels: Level 1, Level 2, Level 3, and Level 4. The Level 3 cut score demarks the minimum level of achievement considered to be proficient for accountability purposes. MAP Growth tests are adaptive interim assessments aligned to state-specific content standards and administered in the fall, winter, and spring. Scores are reported on the RIT vertical scale with a range of 100–350.

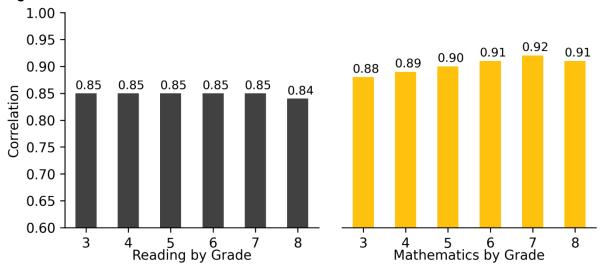
# **E.2. Linking Methods**

Based on scores from the Spring 2019 test administration, the equipercentile linking method was used to identify the spring MAP Growth scores that correspond to the spring SBAC achievement level cut scores. MAP Growth spring cut scores for grade 2 were then derived from the spring cuts for grade 3 and the growth norms for the adjacent grade (i.e., grades 2 to 3). Similarly, the MAP Growth cut scores for the fall and winter administrations of all grades were derived from the spring administration cuts and the growth norms for either fall to spring or winter to spring, respectively. The spring cuts<sup>2</sup> for mathematics were adjusted for score alignment before deriving the cuts for grade 2 spring and for all grades' fall and winter administrations.

#### E.3. Student Sample

Only students who took both the MAP Growth and SBAC assessments in Spring 2019 were included in the study sample. Table E.2 presents the weighted numbers of students from 59 districts and 465 schools across states who were included in the linking study. The linking study sample is voluntary and can only include student scores from partners who share their data. Also, not all students in a state take MAP Growth. The sample may therefore not represent the general student population as well as it should. To ensure that the linking study sample represents the student population in terms of race, sex, achievement level, and state student participation distributions, weighting (i.e., a statistical method that matches the distributions of the variables of interest to those of the target population) was applied to the sample. As a result, the RIT cuts derived from the study sample can be generalized to any student from the target population. All analyses in this study for grades 3–8 were conducted based on the weighted sample.

<sup>&</sup>lt;sup>2</sup> To enhance content validity, NWEA developed an Enhanced Item-Selection Algorithm (EISA) for the MAP Growth assessment to prioritize grade-level content. A pilot study (Meyer et al., 2023) showed that students taking MAP Growth with EISA demonstrated higher average math scores compared with those taking traditional MAP Growth. To improve score comparability, NWEA (Lewis & Kuhfeld, 2024) developed concordance tables to adjust mathematics scores from traditional assessments to align with scores from MAP Growth with EISA, or vice versa. Given that the data for this study were collected from traditional MAP Growth tests but that the results will be used for MAP Growth with EISA, the spring cuts for mathematics were adjusted using the concordance tables before being used to derive other cut scores. This score adjustment will become unnecessary for future linking studies once the new data from EISA tests are collected.

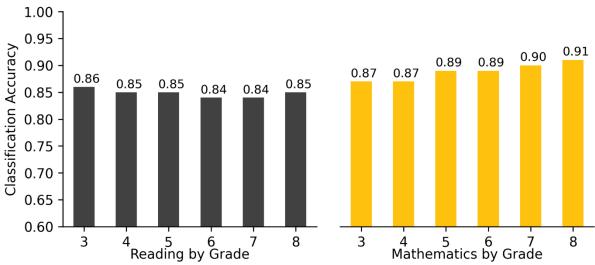

Table E.2. MAP Growth RIT Linking Study Sample

| Grade | # Students  |             |  |  |  |  |  |  |
|-------|-------------|-------------|--|--|--|--|--|--|
| Grade | ELA/Reading | Mathematics |  |  |  |  |  |  |
| 3     | 17,349      | 18,496      |  |  |  |  |  |  |
| 4     | 17,013      | 18,616      |  |  |  |  |  |  |
| 5     | 17,538      | 19,276      |  |  |  |  |  |  |
| 6     | 16,029      | 17,857      |  |  |  |  |  |  |
| 7     | 15,414      | 17,371      |  |  |  |  |  |  |
| 8     | 13,865      | 14,981      |  |  |  |  |  |  |

# E.4. Test Score Relationships

Correlations between MAP Growth RIT scores and SBAC scores range from 0.84 to 0.92 across content areas, as shown in Figure E.1. These values indicate a strong relationship among the scores, which is important validity evidence for the claim that MAP Growth scores are good predictors of performance on the SBAC summative assessments.

Figure E.1. Correlations Between MAP Growth and SBAC Test Scores




# **E.5. Accuracy of MAP Growth Classifications**

Figure E.2 presents the classification accuracy statistics that show the proportion of students correctly classified by their RIT scores as proficient or not proficient on the SBAC summative tests.<sup>3</sup> For example, the MAP Growth reading grade 3 Level 3 cut score has a 0.86 accuracy rate, meaning it accurately classified student achievement on the state test for 86% of the sample. The results range from 0.84 to 0.91 across content areas, indicating that RIT scores have a high accuracy rate of identifying student proficiency on the SBAC summative tests.

<sup>&</sup>lt;sup>3</sup> The classification accuracy calculations for the mathematics spring cuts were based on the concorded cut scores.





#### 1. Introduction

# 1.1. Purpose of the Study

NWEA® is committed to providing partners with useful tools to help make inferences about student learning from MAP® Growth™ test scores. One important use of MAP Growth results is to predict a student's performance on the state summative assessment at different times throughout the year. This allows educators and parents to determine if a student is on track in their learning to meet state standards by the end of the year or, given a student's learning profile, is on track to obtain rigorous, realistic growth in their content knowledge and skills.

This report presents results from a linking study conducted by NWEA in March 2021 to statistically connect the scores of the Smarter Balanced Assessment Consortium (SBAC) grades 3–8 English language arts/literacy (ELA) and mathematics summative assessments with Rasch Unit (RIT) scores from the MAP Growth assessments taken during the Spring 2019 term. This is a multi-state study that includes data from California, Connecticut, Delaware, Hawaii, Idaho, Nevada, Oregon, South Dakota, and Washington. The linking study has been updated to incorporate the most recent 2025 NWEA MAP Growth norms (NWEA, 2025). In this updated study, MAP Growth cut scores are also included for grade 2 so that educators can track early learners' progress toward proficiency on the SBAC summative assessment by grade 3. This report presents the following results:

- 1. Student sample demographics
- 2. Descriptive statistics of test scores
- 3. MAP Growth cut scores that correspond to the SBAC achievement levels using the equipercentile linking procedure for the spring results and the 2025 norms for the fall and winter results
- 4. Classification accuracy statistics to determine the degree to which MAP Growth accurately predicts student proficiency status on the SBAC summative tests
- 5. The probability of achieving grade-level proficiency on the SBAC assessments based on MAP Growth RIT scores from fall, winter, and spring using the 2025 norms

#### 1.2. Assessment Overview

The SBAC grades 3–8 ELA and mathematics summative assessments are aligned to the Common Core State Standards (CCSS) and are administered in multiple states. Each assessment has three cut scores (i.e., the minimum score a student must get on a test to be placed in a certain achievement level) that distinguish between the following achievement levels: Level 1, Level 2, Level 3, and Level 4. The Level 3 cut score demarks the minimum level of performance considered to be proficient for accountability purposes.

MAP Growth interim assessments from NWEA are computer adaptive and aligned to state-specific content standards. Scores are reported on the RIT vertical scale with a range of 100–350. Each content area has its own scale. To aid the interpretation of scores, NWEA periodically conducts norming studies of student and school performance on MAP Growth. Achievement status norms show how well a student performed on the MAP Growth test compared with students in the norming group by associating the student's performance on the MAP Growth test, expressed as a RIT score, with a percentile ranking. Growth norms provide expected score gains across test administrations (e.g., the relative evaluation of a student's growth from fall to spring). The most recent norms study was conducted in 2025 (NWEA, 2025).

#### 2. Methods

#### 2.1. Data Collection

This linking study is based on data from the Spring 2019 administrations of the MAP Growth and SBAC assessments. NWEA requested that districts recruited to participate in the study share their student and score data for the target term. Districts also permitted NWEA to access students' associated MAP Growth scores from the NWEA in-house database.<sup>4</sup> Once state score information was available to NWEA, each student's state testing record was matched to their MAP Growth score by using the student's first and last names, date of birth, student ID, and other available identifying information. Only students who took both the MAP Growth and SBAC assessments in Spring 2019 were included in the study sample.

# 2.2. Post-Stratification Weighting

Post-stratification weights were applied to the calculations to ensure that the linking study sample represented the state population in terms of race, sex, achievement level, and state student participation. These variables were selected because they are correlated with the student's academic achievement within this study and are often provided in the data for the state population. The weighted sample matches the target population as closely as possible for the key demographics and test score characteristics. Specifically, a raking procedure was used to calculate the post-stratification weights and improve the representativeness of the sample. Raking uses iterative procedures to obtain weights that match sample marginal distributions to known population margins. The following steps were taken during this process:

- 1. Calculate marginal distributions of race, sex, achievement level, and state student participation for the sample and population.
- 2. Calculate post-stratification weights with the rake function from the survey package in R (Lumley, 2019).
- 3. Apply the weights to the sample before conducting the linking study analyses.

#### 2.3. MAP Growth Cut Scores

The equipercentile linking method (Kolen & Brennan, 2004) was used to identify the spring MAP Growth RIT scores that correspond to the spring SBAC achievement level cut scores. Spring cuts for grade 2 were derived based on the cuts for grade 3 and the 2025 NWEA growth norms. RIT fall and winter cut scores that predict proficiency on the spring SBAC summative test were then projected using the 2025 growth norms. Percentile ranks are also provided that show how a nationally representative sample of students in the same grade scored on MAP Growth for each administration, which is an important interpretation of RIT test scores. This is useful for understanding (1) how student scores compare with peers nationwide and (2) the relative rigor of a state's achievement level designations for its summative assessment.

The MAP Growth spring cut scores for grades 3–8 could be calculated using the equipercentile linking method because that data are directly connected to the SBAC spring data used in the study. The equipercentile linking procedure matches scores on the two scales that have the same percentile rank (i.e., the proportion of tests at or below each score). For example, let x represent a score on Test X (e.g., SBAC). Its equipercentile equivalent score on Test Y (e.g.,

<sup>&</sup>lt;sup>4</sup> The exception is Clark County in Nevada that did its own matching and provided NWEA with the merged data file.

MAP Growth),  $e_y(x)$ , can be obtained through a cumulative-distribution-based linking function defined as:

$$e_{y}(x) = G^{-1}[P(x)]$$

where  $e_y(x)$  is the equipercentile equivalent of score x on the SBAC tests on the scale of MAP Growth, P(x) is the percentile rank of a given score on the SBAC tests, and  $G^{-1}$  is the inverse of the percentile rank function for MAP Growth that indicates the score on MAP Growth corresponding to a given percentile. Polynomial loglinear pre-smoothing was applied to reduce irregularities of the score distributions and equipercentile linking curve.

The MAP Growth conditional growth norms provide students' expected score gains across terms, such as growth from fall or winter to spring within the same grade or from spring of a lower grade to the spring of the adjacent higher grade. This information can be used to calculate the fall and winter cut scores for grades 3–8 and the fall, winter, and spring cut scores for grade 2. The equation below was used to determine the previous term's or grade's MAP Growth score needed to reach the spring cut score, considering the expected growth associated with the previous RIT score:

$$RIT_{PredSpring} = RIT_{previous} + g$$

#### where:

- RIT<sub>PredSpring</sub> is the predicted MAP Growth spring score,
- RIT<sub>mrevious</sub> is the previous term's or grade's RIT score, and
- *g* is the expected growth from the previous RIT (e.g., fall or winter) to the spring RIT.

To derive the spring cut scores for grade 2, the growth score from spring of one year to the next was used (i.e., the growth score from spring grade 2 to spring grade 3). The calculation of fall and winter cuts for grade 2 followed the same process as the other grades. For example, the growth score from fall to spring in grade 2 was used to calculate the fall cuts for grade 2.

# 2.4. Classification Accuracy

The degree to which MAP Growth predicts student proficiency status on the SBAC tests can be described using classification accuracy statistics based on the MAP Growth spring RIT cut scores that show the proportion of students correctly classified by their RIT scores as proficient (Level 3 or Level 4) or not proficient (Level 1 or Level 2). Table 2.1 describes the classification accuracy statistics provided in this report (Pommerich et al., 2004). The results are based on the Spring 2019 MAP Growth and SBAC data for the Level 3 cut score.

**Table 2.1. Description of Classification Accuracy Summary Statistics** 

| Statistic                                  | Description                        | Interpretation                                                                                                                     |
|--------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Overall<br>Classification<br>Accuracy Rate | (TP + TN) / (total<br>sample size) | Proportion of the study sample whose proficiency classification on the state test was correctly predicted by MAP Growth cut scores |
| False Negative (FN) Rate                   | FN / (FN + TP)                     | Proportion of students identified by MAP Growth as not proficient in those observed as proficient on the state test                |

| Statistic                     | Description                                                   | Interpretation                                                                                                                                                                               |
|-------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| False Positive (FP) Rate      | FP / (FP + TN)                                                | Proportion of students identified by MAP Growth as not proficient in those observed as not proficient on the state test                                                                      |
| Sensitivity                   | TP / (TP + FN)                                                | Proportion of students identified by MAP Growth as proficient in those observed as such on the state test                                                                                    |
| Specificity                   | TN / (TN + FP)                                                | Proportion of students identified by MAP Growth as not proficient in those observed as such on the state test                                                                                |
| Precision                     | TP / (TP + FP)                                                | Proportion of students observed as proficient on the state test in those identified as such by the MAP Growth test                                                                           |
| Area Under the<br>Curve (AUC) | Area under the receiver operating characteristics (ROC) curve | How well MAP Growth cut scores separate the study sample into proficiency categories that match those from the state test cut scores. An AUC at or above 0.80 is considered "good" accuracy. |

Note. FP = false positives; FN = false negatives; TP = true positives; TN = true negatives.

# 2.5. Proficiency Projections

Given that all test scores contain measurement errors, reaching the Level 3 RIT cut does not guarantee that a student is proficient on the state test. Instead, it can be claimed that a student meeting the RIT cut score has a 50% chance of reaching proficiency on the state test, with their chances increasing the greater their score is from the cut. The proficiency projections indicate these probabilities for various RIT scores throughout the year.

In addition to calculating the MAP Growth fall and winter cut scores (and the projected grade 2 cut scores), the MAP Growth conditional growth norms data were also used to calculate the probability of reaching proficiency on the SBAC summative test based on a student's RIT scores from fall and winter:

$$Pr(Achieving\ Level\ 3\ in\ spring |\ starting\ RIT) = \Phi\left(\frac{RIT_{previous}\ +\ g\ -\ RIT_{SpringCut}}{SD}\right)$$

# where:

- Φ is a standardized normal cumulative distribution,
- RIT<sub>previous</sub> is the student's RIT score in fall or winter,
- g is the expected growth from the previous RIT (e.g., fall or winter) to the spring RIT,
- RIT<sub>SpringCut</sub> is the MAP Growth Level 3 cut score for spring, and
- *SD* is the conditional standard deviation of the expected growth, *g*.

The equation below was used to estimate the probability of a student achieving Level 3 performance on the SBAC summative assessment based on their spring RIT score ( $RIT_{Spring}$ ):

$$Pr(Achieving\ Level\ 3\ in\ spring\ |\ spring\ RIT) = \Phi\left(rac{RIT_{Spring} - RIT_{SpringCut}}{SE}
ight)$$

where SE is the standard error of measurement for MAP Growth.

# 3. Results

# 3.1. Study Sample

Only students who took both the MAP Growth and SBAC assessments in Spring 2019 were included in the study sample. Data used in this study were collected from 59 districts and 465 schools across 9 SBAC states. Table 3.1 presents the demographic distributions of race, sex, achievement level, and state student participation in the original unweighted study sample. Table 3.2 presents the distributions of the student population from 9 states who took the Spring 2019 SBAC summative assessments. Since the unweighted data are different from the SBAC student population, post-stratification weights were applied to the linking study sample to improve its representativeness. Table 3.3 presents the demographic distributions of the sample after weighting, which are almost identical to the SBAC student population distributions. The analyses in this study were therefore conducted based on the weighted sample.

Table 3.1. Linking Study Sample Demographics (Unweighted)

| Demographic Subgroup |              | % Students by Grade |        |        |        |        |        |  |  |
|----------------------|--------------|---------------------|--------|--------|--------|--------|--------|--|--|
|                      |              | 3                   | 4      | 5      | 6      | 7      | 8      |  |  |
| ELA/Reading          |              |                     |        |        |        |        |        |  |  |
|                      | Total N      | 17,349              | 17,013 | 17,538 | 16,029 | 15,414 | 13,865 |  |  |
|                      | AI/AN        | 6.3                 | 6.5    | 6.9    | 7.5    | 8.4    | 8.0    |  |  |
|                      | Asian        | 5.9                 | 5.9    | 6.1    | 5.4    | 5.3    | 5.8    |  |  |
|                      | Black        | 7.2                 | 7.4    | 6.8    | 6.7    | 6.9    | 6.8    |  |  |
| Race                 | Hispanic     | 32.1                | 32.3   | 28.5   | 29.3   | 29.1   | 28.5   |  |  |
|                      | Multi-Race   | 5.8                 | 5.5    | 5.5    | 5.0    | 4.9    | 4.4    |  |  |
|                      | NH/PI        | 1.7                 | 1.6    | 1.8    | 1.8    | 2.0    | 2.3    |  |  |
|                      | White        | 41.0                | 40.9   | 44.5   | 44.2   | 43.3   | 44.3   |  |  |
| Sex                  | Female       | 49.2                | 49.2   | 48.8   | 48.8   | 48.5   | 48.9   |  |  |
| Sex                  | Male         | 50.8                | 50.8   | 51.2   | 51.2   | 51.5   | 51.1   |  |  |
|                      | Level 1      | 30.1                | 33.3   | 28.3   | 25.8   | 24.9   | 23.7   |  |  |
| Achievement          | Level 2      | 24.8                | 20.8   | 20.2   | 27.3   | 24.5   | 27.1   |  |  |
| Level                | Level 3      | 22.0                | 23.3   | 29.2   | 31.5   | 34.5   | 33.7   |  |  |
|                      | Level 4      | 23.1                | 22.6   | 22.3   | 15.4   | 16.1   | 15.5   |  |  |
|                      | California   | 42.4                | 41.3   | 37.6   | 36.0   | 36.5   | 36.1   |  |  |
|                      | Connecticut  | 0.7                 | 0.6    | 0.6    | 0.4    | 8.0    | 0.7    |  |  |
|                      | Delaware     | 0.4                 | 0.5    | 1.3    | 1.5    | 1.4    | 1.5    |  |  |
|                      | Hawaii       | 0.1                 | 0.1    | 0.1    | 0.1    | 0.0    | 0.1    |  |  |
| State Student        | Idaho        | 0.9                 | 3.4    | 3.4    | 4.2    | 3.3    | 3.7    |  |  |
| Participation        | Nevada       | 17.3                | 16.1   | 17.6   | 19.1   | 19.2   | 18.9   |  |  |
|                      | Oregon       | 11.3                | 11.8   | 10.4   | 8.2    | 8.1    | 7.6    |  |  |
|                      | South Dakota | 16.8                | 17.2   | 16.4   | 17.5   | 17.7   | 18.1   |  |  |
|                      | Washington   | 10.1                | 9.1    | 12.7   | 13.0   | 13.0   | 13.3   |  |  |

| Demographic Subgroup |              | % Students by Grade |        |        |        |        |        |  |  |
|----------------------|--------------|---------------------|--------|--------|--------|--------|--------|--|--|
| Demographi           | ic Subgroup  | 3                   | 4      | 5      | 6      | 7      | 8      |  |  |
| Mathematics          |              |                     |        |        |        |        |        |  |  |
|                      | Total N      | 18,496              | 18,616 | 19,276 | 17,857 | 17,371 | 14,981 |  |  |
|                      | AI/AN        | 6.0                 | 6.0    | 6.4    | 6.1    | 7.0    | 6.7    |  |  |
|                      | Asian        | 6.0                 | 6.6    | 6.9    | 5.7    | 6.6    | 5.9    |  |  |
|                      | Black        | 8.0                 | 8.3    | 7.6    | 6.2    | 6.1    | 6.1    |  |  |
| Race                 | Hispanic     | 30.1                | 29.7   | 26.9   | 28.1   | 26.9   | 28.4   |  |  |
|                      | Multi-Race   | 6.3                 | 6.2    | 6.1    | 6.0    | 5.9    | 5.4    |  |  |
|                      | NH/PI        | 1.4                 | 1.5    | 1.7    | 1.2    | 1.7    | 1.5    |  |  |
|                      | White        | 42.1                | 41.8   | 44.4   | 46.7   | 45.8   | 46.0   |  |  |
| Sov                  | Female       | 49.1                | 49.2   | 48.7   | 48.7   | 48.4   | 48.5   |  |  |
| Sex                  | Male         | 50.9                | 50.8   | 51.3   | 51.3   | 51.6   | 51.5   |  |  |
|                      | Level 1      | 27.8                | 25.0   | 33.5   | 32.1   | 31.9   | 37.1   |  |  |
| Achievement          | Level 2      | 23.6                | 31.7   | 27.6   | 29.2   | 25.8   | 23.4   |  |  |
| Sex                  | Level 3      | 28.                 | 26.0   | 18.3   | 19.4   | 21.6   | 17.5   |  |  |
|                      | Level 4      | 20.6                | 17.3   | 20.6   | 19.3   | 20.6   | 22.0   |  |  |
|                      | California   | 38.0                | 37.4   | 34.9   | 29.1   | 32.2   | 31.0   |  |  |
|                      | Connecticut  | 0.7                 | 0.6    | 0.5    | 0.4    | 0.7    | 0.7    |  |  |
|                      | Delaware     | 0.3                 | 0.4    | 1.2    | 1.4    | 1.3    | 1.4    |  |  |
|                      | Hawaii       | 0.1                 | 0.1    | 0.1    | 0.1    | 0.0    | 0.1    |  |  |
|                      | Idaho        | 8.0                 | 0.6    | 0.9    | 3.7    | 2.9    | 3.4    |  |  |
| i articipation       | Nevada       | 13.7                | 14.8   | 16.0   | 17.6   | 17.3   | 17.0   |  |  |
|                      | Oregon       | 18.3                | 18.6   | 17.4   | 18.3   | 16.6   | 17.5   |  |  |
|                      | South Dakota | 16.0                | 15.7   | 14.8   | 15.8   | 15.7   | 15.9   |  |  |
|                      | Washington   | 12.2                | 11.8   | 14.2   | 13.6   | 13.3   | 13.0   |  |  |

Note. Al/AN = American Indian/Alaska Native; NH/PI = Native Hawaiian or Other Pacific Islander.

Table 3.2. Spring 2019 SBAC Linking Study Sample Student Population Demographics

|                      |                      | <u> </u>            |         |         |         | <u>-                                      </u> |         |  |  |  |
|----------------------|----------------------|---------------------|---------|---------|---------|------------------------------------------------|---------|--|--|--|
| Demographic Subgroup |                      | % Students by Grade |         |         |         |                                                |         |  |  |  |
| Demograpin           | Demographic Subgroup |                     |         | 5       | 6       | 7                                              | 8       |  |  |  |
| ELA                  |                      |                     |         |         |         |                                                |         |  |  |  |
|                      | Total N              | 698,462             | 694,712 | 724,149 | 726,791 | 733,493                                        | 717,832 |  |  |  |
|                      | AI/AN                | 0.8                 | 0.9     | 0.9     | 0.9     | 0.9                                            | 0.9     |  |  |  |
|                      | Asian                | 8.1                 | 7.9     | 8.2     | 8.1     | 8.2                                            | 8.5     |  |  |  |
|                      | Black                | 5.8                 | 5.9     | 5.9     | 5.8     | 5.8                                            | 5.8     |  |  |  |
| Race                 | Hispanic             | 44.2                | 44.3    | 44.4    | 44.5    | 44.8                                           | 44.1    |  |  |  |
|                      | Multi-Race           | 5.6                 | 5.4     | 5.2     | 5.0     | 4.8                                            | 4.4     |  |  |  |
|                      | NH/PI                | 2.2                 | 2.2     | 2.3     | 2.3     | 2.5                                            | 2.7     |  |  |  |
|                      | White                | 32.7                | 33.0    | 32.7    | 33.0    | 32.7                                           | 33.2    |  |  |  |
| Sex                  | Female               | 49.0                | 48.8    | 48.7    | 48.8    | 49.0                                           | 48.9    |  |  |  |
| Sex                  | Male                 | 51.0                | 51.2    | 51.3    | 51.2    | 51.0                                           | 51.1    |  |  |  |
| Achievement          | Level 1              | 26.9                | 29.9    | 26.7    | 24.1    | 24.7                                           | 24.1    |  |  |  |
| Level                | Level 2              | 23.4                | 19.3    | 19.6    | 24.5    | 22.1                                           | 24.6    |  |  |  |

| Dama a mana la                 | % Students by Grade |         |         |         |         |         |         |  |  |
|--------------------------------|---------------------|---------|---------|---------|---------|---------|---------|--|--|
| Demographic Subgroup           |                     | 3       | 4       | 5       | 6       | 7       | 8       |  |  |
|                                | Level 3             | 22.7    | 23.1    | 29.1    | 32.0    | 34.4    | 33.6    |  |  |
|                                | Level 4             | 27.0    | 27.8    | 24.6    | 19.3    | 18.9    | 17.7    |  |  |
|                                | California          | 63.4    | 62.7    | 62.8    | 62.9    | 64.3    | 64.3    |  |  |
|                                | Connecticut         | 5.2     | 5.4     | 5.3     | 5.4     | 5.3     | 5.5     |  |  |
|                                | Delaware            | 1.5     | 1.5     | 1.5     | 1.5     | 1.4     | 1.4     |  |  |
|                                | Hawaii              | 2.0     | 1.6     | 2.0     | 1.9     | 1.8     | 1.7     |  |  |
| State Student Participation    | Idaho               | 3.3     | 3.4     | 3.4     | 3.4     | 3.3     | 3.3     |  |  |
| Farticipation                  | Nevada              | 5.2     | 5.3     | 5.3     | 5.4     | 5.1     | 5.1     |  |  |
|                                | Oregon              | 6.1     | 6.3     | 6.2     | 6.1     | 5.9     | 5.8     |  |  |
|                                | South Dakota        | 1.6     | 1.6     | 1.6     | 1.6     | 1.5     | 1.5     |  |  |
|                                | Washington          | 11.8    | 12.2    | 12.0    | 11.8    | 11.4    | 11.3    |  |  |
| Mathematics                    |                     |         |         |         |         |         |         |  |  |
|                                | Total N             | 700,790 | 696,880 | 725,859 | 728,323 | 734,697 | 718,210 |  |  |
|                                | AI/AN               | 0.8     | 0.9     | 0.9     | 0.9     | 0.9     | 0.9     |  |  |
|                                | Asian               | 8.2     | 8.0     | 8.2     | 8.2     | 8.2     | 8.6     |  |  |
|                                | Black               | 5.8     | 5.9     | 5.9     | 5.8     | 5.8     | 5.8     |  |  |
| Race                           | Hispanic            | 44.3    | 44.3    | 44.5    | 44.5    | 44.8    | 44.2    |  |  |
|                                | Multi-Race          | 5.5     | 5.4     | 5.2     | 5.0     | 4.8     | 4.4     |  |  |
|                                | NH/PI               | 2.2     | 2.2     | 2.3     | 2.3     | 2.5     | 2.7     |  |  |
|                                | White               | 32.6    | 32.9    | 32.6    | 32.9    | 32.7    | 33.1    |  |  |
| Sex                            | Female              | 49.0    | 48.8    | 48.7    | 48.8    | 48.9    | 48.9    |  |  |
| Sex                            | Male                | 51.0    | 51.2    | 51.3    | 51.2    | 51.1    | 51.1    |  |  |
|                                | Level 1             | 25.8    | 23.3    | 33.1    | 32.6    | 34.2    | 38.7    |  |  |
| Achievement                    | Level 2             | 22.7    | 29.9    | 26.7    | 27.6    | 25.8    | 23.1    |  |  |
| Level                          | Level 3             | 28.1    | 25.9    | 17.7    | 19.4    | 19.7    | 16.7    |  |  |
|                                | Level 4             | 23.3    | 20.9    | 22.5    | 20.5    | 20.2    | 21.5    |  |  |
|                                | California          | 63.5    | 62.8    | 62.9    | 63.0    | 64.4    | 64.4    |  |  |
|                                | Connecticut         | 5.2     | 5.4     | 5.3     | 5.4     | 5.3     | 5.5     |  |  |
|                                | Delaware            | 1.5     | 1.5     | 1.5     | 1.5     | 1.4     | 1.4     |  |  |
| 04 - 4 - 04 - 1 4              | Hawaii              | 2.0     | 1.6     | 2.0     | 1.9     | 1.8     | 1.7     |  |  |
| State Student<br>Participation | Idaho               | 3.3     | 3.4     | 3.4     | 3.4     | 3.3     | 3.3     |  |  |
| i artioipation                 | Nevada              | 5.2     | 5.3     | 5.3     | 5.4     | 5.1     | 5.1     |  |  |
|                                | Oregon              | 6.0     | 6.2     | 6.2     | 6.1     | 5.8     | 5.8     |  |  |
|                                | South Dakota        | 1.6     | 1.6     | 1.6     | 1.6     | 1.5     | 1.5     |  |  |
|                                | Washington          | 11.8    | 12.2    | 11.9    | 11.8    | 11.3    | 11.3    |  |  |

Note. Al/AN = American Indian/Alaska Native; NH/PI = Native Hawaiian or Other Pacific Islander.

 Table 3.3. Linking Study Sample Demographics (Weighted)

| Dames and the | ia Cubana       | % Students by Grade |        |        |        |        |        |  |
|---------------|-----------------|---------------------|--------|--------|--------|--------|--------|--|
| Demographi    | ic Subgroup     | 3                   | 4      | 5      | 6      | 7      | 8      |  |
| ELA/Reading   |                 |                     |        |        |        |        |        |  |
|               | Total N         | 17,349              | 17,013 | 17,538 | 16,029 | 15,414 | 13,865 |  |
|               | AI/AN           | 0.8                 | 0.9    | 0.9    | 0.9    | 0.9    | 0.9    |  |
|               | Asian           | 8.2                 | 8.0    | 8.2    | 8.1    | 8.2    | 8.5    |  |
|               | Black           | 5.9                 | 6.0    | 6.0    | 5.9    | 5.8    | 5.8    |  |
| Race          | Hispanic        | 44.4                | 44.5   | 44.5   | 44.6   | 44.9   | 44.3   |  |
|               | Multi-Race      | 5.6                 | 5.4    | 5.3    | 5.1    | 4.8    | 4.4    |  |
|               | NH/PI           | 2.3                 | 2.2    | 2.3    | 2.3    | 2.5    | 2.7    |  |
|               | White           | 32.8                | 33.2   | 32.8   | 33.1   | 32.9   | 33.3   |  |
| Cav           | Female          | 49.0                | 48.8   | 48.7   | 48.8   | 49.0   | 48.9   |  |
| Sex           | Male            | 51.0                | 51.2   | 51.3   | 51.2   | 51.0   | 51.1   |  |
|               | Level 1         | 26.9                | 29.9   | 26.7   | 24.1   | 24.7   | 24.1   |  |
| Achievement   | Level 2         | 23.4                | 19.3   | 19.6   | 24.5   | 22.1   | 24.6   |  |
| Level         | Level 3         | 22.7                | 23.1   | 29.1   | 32.0   | 34.4   | 33.6   |  |
|               | Level 4         | 27.0                | 27.8   | 24.6   | 19.3   | 18.9   | 17.7   |  |
|               | California      | 63.4                | 62.7   | 62.8   | 62.9   | 64.3   | 64.3   |  |
|               | Connecticut     | 5.2                 | 5.4    | 5.3    | 5.4    | 5.3    | 5.5    |  |
|               | Delaware        | 1.5                 | 1.5    | 1.5    | 1.5    | 1.4    | 1.4    |  |
|               | Hawaii          | 2.0                 | 1.6    | 2.0    | 1.9    | 1.8    | 1.7    |  |
| State Student | Idaho           | 3.3                 | 3.4    | 3.4    | 3.4    | 3.3    | 3.3    |  |
| Participation | Nevada          | 5.2                 | 5.3    | 5.3    | 5.4    | 5.1    | 5.1    |  |
|               | Oregon          | 6.1                 | 6.3    | 6.2    | 6.1    | 5.9    | 5.8    |  |
|               | South Dakota    | 1.6                 | 1.6    | 1.6    | 1.6    | 1.5    | 1.5    |  |
|               | Washington      | 11.8                | 12.2   | 12.0   | 11.8   | 11.4   | 11.3   |  |
| Mathematics   |                 |                     |        |        |        |        |        |  |
|               | Total N         | 18,496              | 18,616 | 19,276 | 17,857 | 17,371 | 14,981 |  |
|               | AI/AN           | 0.8                 | 0.9    | 0.9    | 0.9    | 0.9    | 0.9    |  |
|               | Asian           | 8.2                 | 8.1    | 8.3    | 8.2    | 8.3    | 8.6    |  |
|               | Black           | 5.9                 | 5.9    | 5.9    | 5.9    | 5.8    | 5.8    |  |
| Race          | Hispanic        | 44.5                | 44.5   | 44.6   | 44.7   | 45.0   | 44.4   |  |
|               | Multi-Race      | 5.6                 | 5.4    | 5.2    | 5.0    | 4.8    | 4.4    |  |
|               | NH/PI           | 2.3                 | 2.2    | 2.3    | 2.3    | 2.5    | 2.7    |  |
|               | White           | 32.7                | 33.1   | 32.7   | 33.0   | 32.8   | 33.3   |  |
| _             | Female          | 49.0                | 48.8   | 48.7   | 48.8   | 48.9   | 48.9   |  |
| Sex           | Male            | 51.0                | 51.2   | 51.3   | 51.2   | 51.1   | 51.1   |  |
|               | Level 1         | 25.8                | 23.3   | 33.1   | 32.6   | 34.3   | 38.7   |  |
| Achievement   | Level 2         | 22.8                | 29.9   | 26.7   | 27.6   | 25.8   | 23.1   |  |
| Level         | Level 3         | 28.1                | 25.9   | 17.7   | 19.4   | 19.7   | 16.7   |  |
|               | Level 4         | 23.3                | 20.9   | 22.5   | 20.5   | 20.2   | 21.5   |  |
| State Student | California      | 63.5                | 62.8   | 62.9   | 63.0   | 64.4   | 64.4   |  |
| Participation | Connecticut     | 5.2                 | 5.4    | 5.3    | 5.4    | 5.3    | 5.5    |  |
|               | 1 2311113311341 | J.2                 | J. 1   | 3.0    | J. 1   | 3.0    | 3.0    |  |

| Demographic Subgroup |                      | % Students by Grade |      |      |      |      |      |  |
|----------------------|----------------------|---------------------|------|------|------|------|------|--|
| Demograph            | Demographic Subgroup |                     | 4    | 5    | 6    | 7    | 8    |  |
|                      | Delaware             | 1.5                 | 1.5  | 1.5  | 1.5  | 1.4  | 1.4  |  |
|                      | Hawaii               | 2.0                 | 1.6  | 2.0  | 1.9  | 1.8  | 1.7  |  |
|                      | Idaho                | 3.3                 | 3.4  | 3.4  | 3.4  | 3.3  | 3.3  |  |
|                      | Nevada               | 5.2                 | 5.3  | 5.3  | 5.4  | 5.1  | 5.1  |  |
|                      | Oregon               | 6.0                 | 6.2  | 6.2  | 6.1  | 5.8  | 5.8  |  |
|                      | South Dakota         | 1.6                 | 1.6  | 1.6  | 1.6  | 1.5  | 1.5  |  |
|                      | Washington           | 11.8                | 12.2 | 11.9 | 11.8 | 11.3 | 11.3 |  |

Note. Al/AN = American Indian/Alaska Native; NH/PI = Native Hawaiian or Other Pacific Islander.

# 3.2. Descriptive Statistics

Table 3.4 presents descriptive statistics of the MAP Growth and SBAC test scores from Spring 2019, including the correlation coefficients (*r*) between them. The correlation coefficients between the scores range from 0.84 to 0.85 for ELA/reading and 0.88 to 0.92 for mathematics. These values indicate a strong relationship among the scores, which is important validity evidence for the claim that MAP Growth scores are good predictors of performance on the SBAC summative assessments.

**Table 3.4. Descriptive Statistics of Test Scores** 

| Grade  | N      | r    |        | SBA   | C    |      |       | MAP G | rowth |      |
|--------|--------|------|--------|-------|------|------|-------|-------|-------|------|
| Grade  | IN     | ,    | Mean   | SD    | Min. | Max. | Mean  | SD    | Min.  | Max. |
| ELA/Re | ading  |      |        |       |      |      |       |       |       |      |
| 3      | 17,349 | 0.85 | 2426.7 | 90.9  | 2114 | 2702 | 197.4 | 16.5  | 138   | 251  |
| 4      | 17,013 | 0.85 | 2469.0 | 95.8  | 2131 | 2761 | 204.5 | 16.1  | 144   | 256  |
| 5      | 17,538 | 0.85 | 2505.5 | 99.2  | 2142 | 2787 | 210.2 | 16.0  | 145   | 266  |
| 6      | 16,029 | 0.85 | 2526.2 | 99.5  | 2135 | 2891 | 214.4 | 16.6  | 154   | 267  |
| 7      | 15,414 | 0.85 | 2551.1 | 103.8 | 1941 | 2879 | 216.6 | 17.3  | 151   | 266  |
| 8      | 13,865 | 0.84 | 2564.4 | 103.4 | 1225 | 2874 | 220.3 | 17.2  | 147   | 285  |
| Mathen | natics |      |        |       |      |      |       |       |       |      |
| 3      | 18,496 | 0.88 | 2436.6 | 83.7  | 2097 | 2762 | 200.6 | 14.7  | 133   | 275  |
| 4      | 18,616 | 0.89 | 2475.3 | 85.0  | 2090 | 2796 | 210.2 | 16.0  | 131   | 275  |
| 5      | 19,276 | 0.90 | 2499.6 | 95.6  | 1623 | 2871 | 217.8 | 18.2  | 128   | 288  |
| 6      | 17,857 | 0.91 | 2516.1 | 111.9 | 1985 | 2924 | 221.1 | 18.4  | 157   | 317  |
| 7      | 17,371 | 0.92 | 2530.9 | 117.7 | 1232 | 3042 | 225.1 | 20.5  | 152   | 302  |
| 8      | 14,981 | 0.91 | 2544.4 | 125.4 | 2113 | 2993 | 230.0 | 21.4  | 153   | 304  |

*Note*. SD = standard deviation; Min. = minimum; Max. = maximum.

#### 3.3. MAP Growth Cut Scores

Table 3.5 and Table 3.6 present the SBAC scale score ranges and the corresponding MAP Growth RIT cut scores and percentile ranges by content area and grade. These tables can be used to predict a student's likely achievement level on the SBAC spring summative assessment when MAP Growth is taken in the fall, winter, or spring. For example, a grade 3 student who obtained a MAP Growth reading RIT score of 191 in the fall is likely to achieve Level 3 performance on the SBAC ELA summative test. A grade 3 student who obtained a MAP Growth reading RIT score of 196 in the winter is also likely to achieve Level 3 performance on the SBAC spring summative assessment. The winter cut score is higher than the fall cut score because growth is expected between fall and winter as students receive more instruction during the school year.

Within this report, the cut scores for fall and winter are derived from the spring cuts and the typical growth scores from fall-to-spring or winter-to-spring. The typical growth scores are based on the default instructional weeks most encountered for each term (Weeks 4, 20, and 32 for fall, winter, and spring, respectively). Since instructional weeks often vary by district, the cut scores in this report may differ slightly from the MAP Growth score reports that reflect instructional weeks set by partners. If the actual instructional weeks deviate from the default ones, a student's projected achievement level could be different from the generic projection presented in this document. Partners are therefore encouraged to use the projected achievement level in students' score reports since they reflect the specific instructional weeks set by partners.

Table 3.5. MAP Growth Cut Scores—ELA/Reading

|        |         |            |         | SBAC EL      | 4               |               |         |            |
|--------|---------|------------|---------|--------------|-----------------|---------------|---------|------------|
| Grade  | Lev     | vel 1      | Lev     | vel 2        | Le              | vel 3         | Lev     | vel 4      |
| 3      | ≤2      | 366        | 2367    | -2431        | 2432            | -2489         | ≥2      | 490        |
| 4      | ≤2      | 415        | 2416    | -2472        | 2473            | -2532         | ≥2      | 533        |
| 5      | ≤2      | 441        | 2442    | -2501        | 2502            | -2581         | ≥2      | 582        |
| 6      | ≤2      | 456        | 2457    | -2530        | 2531            | -2617         | ≥2      | 618        |
| 7      | ≤2      | 478        | 2479    | -2551        | 2552            | -2648         | ≥2      | 649        |
| 8      | ≤2      | 486        | 2487    | _2566        | 2567            | <u>–</u> 2667 | ≥2      | 668        |
|        |         |            | MA      | AP Growth Re | eading          |               |         |            |
| Grade  | Lev     | vel 1      | Lev     | vel 2        | Le              | vel 3         | Le      | vel 4      |
| Graue  | RIT     | Percentile | RIT     | Percentile   | RIT             | Percentile    | RIT     | Percentile |
| Fall   |         |            |         |              |                 |               |         |            |
| 2      | 100–160 | 1–29       | 161–175 | 30–63        | <b>176</b> –190 | 64–88         | 191–350 | 89–99      |
| 3      | 100–177 | 1–35       | 178–190 | 36–62        | <b>191</b> –201 | 63–82         | 202–350 | 83–99      |
| 4      | 100–189 | 1–36       | 190–199 | 37–58        | <b>200</b> –210 | 59–79         | 211–350 | 80–99      |
| 5      | 100–194 | 1–30       | 195–206 | 31–57        | <b>207</b> –218 | 58–80         | 219–350 | 81–99      |
| 6      | 100–199 | 1–29       | 200–212 | 30–59        | <b>213</b> –226 | 60–85         | 227–350 | 86–99      |
| 7      | 100–201 | 1–26       | 202–215 | 27–58        | <b>216</b> –229 | 59–84         | 230–350 | 85–99      |
| 8      | 100–204 | 1–25       | 205–219 | 26–59        | <b>220</b> –234 | 60–86         | 235–350 | 87–99      |
| Winter |         |            |         |              |                 |               |         |            |
| 2      | 100–167 | 1–30       | 168–182 | 31–63        | <b>183</b> –196 | 64–87         | 197–350 | 88–99      |
| 3      | 100–182 | 1–34       | 183–195 | 35–62        | <b>196</b> –206 | 63–82         | 207–350 | 83–99      |
| 4      | 100–193 | 1–37       | 194–203 | 38–59        | <b>204</b> –213 | 60–78         | 214–350 | 79–99      |
| 5      | 100–197 | 1–30       | 198–208 | 31–55        | <b>209</b> –220 | 56–79         | 221–350 | 80–99      |
| 6      | 100–201 | 1–29       | 202–214 | 30–59        | <b>215</b> –227 | 60–84         | 228–350 | 85–99      |
| 7      | 100–203 | 1–27       | 204–216 | 28–57        | <b>217</b> –230 | 58–84         | 231–350 | 85–99      |
| 8      | 100–206 | 1–27       | 207–220 | 28–58        | <b>221</b> –235 | 59–86         | 236–350 | 87–99      |
| Spring |         |            |         |              |                 |               |         |            |
| 2      | 100–173 | 1–32       | 174–186 | 33–61        | <b>187</b> –199 | 62–84         | 200–350 | 85–99      |
| 3      | 100–187 | 1–36       | 188–198 | 37–60        | <b>199</b> –208 | 61–79         | 209–350 | 80–99      |
| 4      | 100–196 | 1–38       | 197–205 | 39–58        | <b>206</b> –214 | 59–76         | 215–350 | 77–99      |
| 5      | 100–200 | 1–32       | 201–210 | 33–55        | <b>211</b> –221 | 56–78         | 222–350 | 79–99      |
| 6      | 100–203 | 1–30       | 204–215 | 31–58        | <b>216</b> –228 | 59–84         | 229–350 | 85–99      |
| 7      | 100–205 | 1–29       | 206–217 | 30–56        | <b>218</b> –231 | 57–83         | 232–350 | 84–99      |
| 8      | 100–208 | 1–29       | 209–221 | 30–59        | <b>222</b> –236 | 60–86         | 237–350 | 87–99      |

*Note*. Cut scores for fall and winter are derived from the spring cuts and growth norms based on the typical instructional weeks. Spring cut scores for grade 2 were derived from the grade 3 cuts using the growth norms. Bold numbers indicate the cut scores considered to be at least proficient for accountability purposes.

**Table 3.6. MAP Growth Cut Scores—Mathematics** 

|        |         |            | S       | BAC Mathem  | atics           |            |         |            |
|--------|---------|------------|---------|-------------|-----------------|------------|---------|------------|
| Grade  | Lev     | /el 1      |         | vel 2       |                 | vel 3      | Lev     | vel 4      |
| 3      |         | 380        |         | –2435       |                 | i–2500     |         | 501        |
| 4      |         | 410        |         | -2484       |                 | -2548      |         | 549        |
| 5      |         | 454        |         | -2527       | 2528            | -2578      |         | 579        |
| 6      |         | 472        |         | -2551       |                 | -2609      |         | 610        |
| 7      | ≤2      | 483        | 2484    | -2566       |                 | -2634      |         | 635        |
| 8      | ≤2      | 503        | 2504    | -2585       | 2586            | -2652      |         | 653        |
|        |         |            | MAP     | Growth Math | nematics        |            |         |            |
| Grada  | Lev     | vel 1      | Lev     | vel 2       | Le              | vel 3      | Lev     | vel 4      |
| Grade  | RIT     | Percentile | RIT     | Percentile  | RIT             | Percentile | RIT     | Percentile |
| Fall   |         |            |         |             |                 |            |         |            |
| 2      | 100–163 | 1–27       | 164–176 | 28–60       | <b>177</b> –191 | 61–88      | 192–350 | 89–99      |
| 3      | 100–177 | 1–34       | 178–187 | 35–59       | <b>188</b> –199 | 60–84      | 200-350 | 85–99      |
| 4      | 100–189 | 1–32       | 190–204 | 33–68       | <b>205</b> –216 | 69–89      | 217–350 | 90–99      |
| 5      | 100–201 | 1–39       | 202–216 | 40–74       | <b>217</b> –225 | 75–88      | 226-350 | 89–99      |
| 6      | 100–206 | 1–41       | 207–219 | 42–72       | <b>220</b> –229 | 73–88      | 230–350 | 89–99      |
| 7      | 100–211 | 1–37       | 212–226 | 38–71       | <b>227</b> –238 | 72–89      | 239–350 | 90–99      |
| 8      | 100–219 | 1–45       | 220–233 | 46–73       | <b>234</b> –245 | 74–89      | 246–350 | 90–99      |
| Winter |         |            |         |             |                 |            |         |            |
| 2      | 100–172 | 1–29       | 173–184 | 30–59       | <b>185</b> –200 | 60–89      | 201–350 | 90–99      |
| 3      | 100–185 | 1–33       | 186–196 | 34–59       | <b>197</b> –208 | 60–83      | 209–350 | 84–99      |
| 4      | 100–196 | 1–32       | 197–212 | 33–68       | <b>213</b> –224 | 69–88      | 225–350 | 89–99      |
| 5      | 100–207 | 1–40       | 208–222 | 41–73       | <b>223</b> –231 | 74–87      | 232–350 | 88–99      |
| 6      | 100–212 | 1–42       | 213–225 | 43–71       | <b>226</b> –236 | 72–88      | 237–350 | 89–99      |
| 7      | 100–215 | 1–38       | 216–231 | 39–72       | <b>232</b> –243 | 73–88      | 244–350 | 89–99      |
| 8      | 100–223 | 1–45       | 224–238 | 46–74       | <b>239</b> –250 | 75–89      | 251–350 | 90–99      |
| Spring |         |            |         |             |                 |            |         |            |
| 2      | 100–179 | 1–31       | 180–190 | 32–58       | <b>191</b> –204 | 59–85      | 205–350 | 86–99      |
| 3      | 100–192 | 1–35       | 193–202 | 36–58       | <b>203</b> –214 | 59–81      | 215–350 | 82–99      |
| 4      | 100–202 | 1–34       | 203–217 | 35–66       | <b>218</b> –229 | 67–86      | 230–350 | 87–99      |
| 5      | 103–211 | 1–40       | 212–226 | 41–71       | <b>227</b> –235 | 72–85      | 236–350 | 86–99      |
| 6      | 102–216 | 1–42       | 217–229 | 43–69       | <b>230</b> –240 | 70–86      | 241–350 | 87–99      |
| 7      | 105–218 | 1–39       | 219–233 | 40–69       | <b>234</b> –245 | 70–86      | 246–350 | 87–99      |
| 8      | 105–226 | 1–45       | 227–240 | 46–72       | <b>241</b> –252 | 73–87      | 253–350 | 88–99      |

*Note*. Cut scores for fall and winter are derived from the spring cuts and growth norms based on the typical instructional weeks. Spring cut scores for grade 2 were derived from the grade 3 cuts using the growth norms. Bold numbers indicate the cut scores considered to be at least proficient for accountability purposes.

# 3.4. Classification Accuracy

Table 3.7 presents the classification accuracy summary statistics, including the overall classification accuracy rates. These results indicate how well MAP Growth spring RIT scores predict proficiency on the SBAC summative tests, providing insight into the predictive validity of MAP Growth. The overall classification accuracy rates range from 0.84 to 0.86 for ELA/reading and 0.87 to 0.91 for mathematics. These values suggest that the RIT cut scores are good at classifying students as proficient or not proficient on the SBAC summative assessment.

Although the results show that MAP Growth scores can be used to accurately classify students as likely to be proficient on the SBAC summative tests, there is a notable limitation to how these results should be used and interpreted. The SBAC and MAP Growth assessments are designed for different purposes and measure slightly different constructs even within the same content area. Therefore, scores on the two tests cannot be assumed to be interchangeable. MAP Growth may not be used as a substitute for the summative tests and vice versa.

**Table 3.7. Classification Accuracy Results** 

| Crada  | N      | Cut Sco    | re   | Class.   | Ra   | ate  | Concitivity | Chaoifiaitu | Dragicion | ALIC |
|--------|--------|------------|------|----------|------|------|-------------|-------------|-----------|------|
| Grade  | N      | MAP Growth | SBAC | Accuracy | FP   | FN   | Sensitivity | Specificity | Precision | AUC  |
| ELA/Re | ading  |            |      |          |      |      |             |             |           |      |
| 3      | 17,349 | 199        | 2432 | 0.86     | 0.16 | 0.12 | 0.88        | 0.84        | 0.84      | 0.94 |
| 4      | 17,013 | 206        | 2473 | 0.85     | 0.17 | 0.13 | 0.87        | 0.83        | 0.84      | 0.93 |
| 5      | 17,538 | 211        | 2502 | 0.85     | 0.17 | 0.13 | 0.87        | 0.83        | 0.86      | 0.93 |
| 6      | 16,029 | 216        | 2531 | 0.84     | 0.17 | 0.15 | 0.85        | 0.83        | 0.84      | 0.93 |
| 7      | 15,414 | 218        | 2552 | 0.84     | 0.16 | 0.15 | 0.85        | 0.84        | 0.86      | 0.93 |
| 8      | 13,865 | 222        | 2567 | 0.85     | 0.16 | 0.15 | 0.85        | 0.84        | 0.85      | 0.93 |
| Mathen | natics |            |      |          |      |      |             |             |           |      |
| 3      | 18,496 | 201        | 2436 | 0.87     | 0.17 | 0.10 | 0.90        | 0.83        | 0.85      | 0.95 |
| 4      | 18,616 | 213        | 2485 | 0.87     | 0.12 | 0.14 | 0.86        | 0.88        | 0.86      | 0.95 |
| 5      | 19,276 | 224        | 2528 | 0.89     | 0.09 | 0.14 | 0.86        | 0.91        | 0.87      | 0.96 |
| 6      | 17,857 | 227        | 2552 | 0.89     | 0.09 | 0.12 | 0.88        | 0.91        | 0.86      | 0.96 |
| 7      | 17,371 | 232        | 2567 | 0.90     | 0.07 | 0.13 | 0.87        | 0.93        | 0.89      | 0.97 |
| 8      | 14,981 | 237        | 2586 | 0.91     | 0.08 | 0.12 | 0.88        | 0.92        | 0.87      | 0.97 |

Note. Class. Accuracy = overall classification accuracy rate; FP = false positives; FN = false negatives; AUC = area under the ROC curve.

# 3.5. Post-Hoc Analyses

A post-hoc analysis was conducted to evaluate the sensitivity of the results to different post-stratification weighting methods given that NWEA did not have data for 3 of the 12 SBAC states (i.e., Montana, Vermont, and Michigan). Results were compared across three scenarios. One scenario involved student demographics and state student participation. A second used no post-stratification weighting and relied on sample data only. A third scenario used post-stratification weights for student demographics but not for state student participation. More specifically, cut scores and classification accuracy statistics derived from the following scenarios were compared: (1) the sample weighted to population data for the 9 participating states by race, sex, achievement level, and state student participation; (2) the unweighted sample; and (3) the sample weighted to population data for the 12 SBAC states from Spring 2019 by race, sex, and achievement level without considering state student participation. In the third scenario, population data were available for 3 states, but there were no corresponding sample data.

The comparison of cut scores among the different scenarios showed that any differences were within 1 RIT unit. Results from the first scenario are reported for this linking study because student participation for each state was considered to be an important characteristic of the target population and because the sample included data from these 9 states only. Although SBAC states not included in this study could use the results for predicting proficiency on the SBAC assessment, the accuracy of using the results for their students is unknown because no sample data existed for them in the linking procedure or the classification analysis study. However, the small differences across the three scenarios suggest that the cut scores in this study are suitably approximate for all SBAC states. This study provides context for predicting proficiency for the entire SBAC population, but the most accurate results for an individual state can be found in the state-specific SBAC linking studies.

# 3.6. Proficiency Projections

Table 3.8 and Table 3.9 present the estimated probability of achieving Level 3 performance on the SBAC summative test based on RIT scores from fall, winter, or spring. "Prob." indicates the probability of obtaining proficient status on the SBAC summative test in the spring. For example, a grade 3 student who obtained a MAP Growth reading score of 192 in the fall has a 54% chance of reaching Level 3 or higher on the SBAC summative test.

<sup>&</sup>lt;sup>5</sup> The 12 states included California, Connecticut, Delaware, Hawaii, Idaho, Michigan, Montana, Nevada, Oregon, South Dakota, Vermont, and Washington. The data collected from Michigan could not be used in this study because the state scale scores are not on the SBAC scale. As a result, Michigan should refer to its own linking study results.

Table 3.8. Proficiency Projection Based on RIT Scores—ELA/Reading

|       | 044              | 0             |      | Fall        |            |        | Winter      |            |        | Spring      |            |
|-------|------------------|---------------|------|-------------|------------|--------|-------------|------------|--------|-------------|------------|
| Grade | Start Percentile | Spring<br>Cut | Fall | Projected P | roficiency | Winter | Projected P | roficiency | Spring | Projected P | roficiency |
|       | 1 ercentile      | Out           | RIT  | Level 3     | Prob.      | RIT    | Level 3     | Prob.      | RIT    | Level 3     | Prob.      |
|       | 5                | 187           | 142  | No          | <0.01      | 149    | No          | <0.01      | 153    | No          | <0.01      |
|       | 10               | 187           | 148  | No          | <0.01      | 155    | No          | <0.01      | 159    | No          | <0.01      |
|       | 15               | 187           | 152  | No          | 0.01       | 159    | No          | 0.01       | 164    | No          | <0.01      |
|       | 20               | 187           | 156  | No          | 0.03       | 162    | No          | 0.02       | 167    | No          | <0.01      |
|       | 25               | 187           | 159  | No          | 0.05       | 165    | No          | 0.03       | 170    | No          | <0.01      |
|       | 30               | 187           | 161  | No          | 0.07       | 168    | No          | 0.06       | 173    | No          | <0.01      |
|       | 35               | 187           | 163  | No          | 0.11       | 170    | No          | 0.09       | 175    | No          | <0.01      |
|       | 40               | 187           | 166  | No          | 0.16       | 172    | No          | 0.14       | 177    | No          | <0.01      |
|       | 45               | 187           | 168  | No          | 0.22       | 175    | No          | 0.2        | 180    | No          | 0.02       |
| 2     | 50               | 187           | 170  | No          | 0.29       | 177    | No          | 0.27       | 182    | No          | 0.08       |
|       | 55               | 187           | 172  | No          | 0.33       | 179    | No          | 0.36       | 184    | No          | 0.2        |
|       | 60               | 187           | 174  | No          | 0.41       | 181    | No          | 0.41       | 186    | No          | 0.39       |
|       | 65               | 187           | 177  | Yes         | 0.54       | 183    | Yes         | 0.5        | 188    | Yes         | 0.61       |
|       | 70               | 187           | 179  | Yes         | 0.59       | 186    | Yes         | 0.64       | 191    | Yes         | 0.87       |
|       | 75               | 187           | 182  | Yes         | 0.71       | 188    | Yes         | 0.73       | 193    | Yes         | 0.96       |
|       | 80               | 187           | 184  | Yes         | 0.78       | 191    | Yes         | 0.8        | 196    | Yes         | 0.99       |
|       | 85               | 187           | 188  | Yes         | 0.87       | 194    | Yes         | 0.89       | 200    | Yes         | >0.99      |
|       | 90               | 187           | 192  | Yes         | 0.94       | 199    | Yes         | 0.95       | 204    | Yes         | >0.99      |
|       | 95               | 187           | 198  | Yes         | 0.98       | 205    | Yes         | 0.99       | 210    | Yes         | >0.99      |
|       | 5                | 199           | 155  | No          | <0.01      | 160    | No          | <0.01      | 164    | No          | <0.01      |
|       | 10               | 199           | 161  | No          | <0.01      | 167    | No          | <0.01      | 171    | No          | <0.01      |
|       | 15               | 199           | 166  | No          | 0.01       | 171    | No          | <0.01      | 175    | No          | <0.01      |
| 3     | 20               | 199           | 169  | No          | 0.02       | 175    | No          | 0.02       | 179    | No          | <0.01      |
| 3     | 25               | 199           | 172  | No          | 0.04       | 178    | No          | 0.03       | 182    | No          | <0.01      |
|       | 30               | 199           | 175  | No          | 0.06       | 180    | No          | 0.05       | 184    | No          | <0.01      |
|       | 35               | 199           | 178  | No          | 0.11       | 183    | No          | 0.09       | 187    | No          | <0.01      |
|       | 40               | 199           | 180  | No          | 0.16       | 185    | No          | 0.12       | 189    | No          | <0.01      |

|       | 04 4             | 0             |      | Fall        |            |        | Winter      |            |        | Spring      |            |
|-------|------------------|---------------|------|-------------|------------|--------|-------------|------------|--------|-------------|------------|
| Grade | Start Percentile | Spring<br>Cut | Fall | Projected P | roficiency | Winter | Projected P | roficiency | Spring | Projected P | roficiency |
|       | reicentile       | Cut           | RIT  | Level 3     | Prob.      | RIT    | Level 3     | Prob.      | RIT    | Level 3     | Prob.      |
|       | 45               | 199           | 182  | No          | 0.18       | 188    | No          | 0.2        | 192    | No          | 0.02       |
|       | 50               | 199           | 185  | No          | 0.29       | 190    | No          | 0.27       | 194    | No          | 0.08       |
|       | 55               | 199           | 187  | No          | 0.37       | 192    | No          | 0.36       | 196    | No          | 0.2        |
|       | 60               | 199           | 189  | No          | 0.46       | 194    | No          | 0.41       | 198    | No          | 0.39       |
|       | 65               | 199           | 192  | Yes         | 0.54       | 197    | Yes         | 0.55       | 201    | Yes         | 0.72       |
|       | 70               | 199           | 194  | Yes         | 0.63       | 199    | Yes         | 0.64       | 203    | Yes         | 0.87       |
|       | 75               | 199           | 197  | Yes         | 0.71       | 202    | Yes         | 0.76       | 206    | Yes         | 0.98       |
|       | 80               | 199           | 200  | Yes         | 0.82       | 205    | Yes         | 0.83       | 209    | Yes         | >0.99      |
|       | 85               | 199           | 204  | Yes         | 0.89       | 209    | Yes         | 0.92       | 213    | Yes         | >0.99      |
|       | 90               | 199           | 208  | Yes         | 0.95       | 213    | Yes         | 0.96       | 217    | Yes         | >0.99      |
|       | 95               | 199           | 215  | Yes         | 0.99       | 220    | Yes         | >0.99      | 224    | Yes         | >0.99      |
|       | 5                | 206           | 166  | No          | <0.01      | 170    | No          | <0.01      | 173    | No          | <0.01      |
|       | 10               | 206           | 173  | No          | <0.01      | 177    | No          | <0.01      | 179    | No          | <0.01      |
|       | 15               | 206           | 177  | No          | 0.01       | 181    | No          | 0.01       | 184    | No          | <0.01      |
|       | 20               | 206           | 181  | No          | 0.02       | 184    | No          | 0.01       | 187    | No          | <0.01      |
|       | 25               | 206           | 184  | No          | 0.05       | 187    | No          | 0.03       | 190    | No          | <0.01      |
|       | 30               | 206           | 186  | No          | 0.06       | 190    | No          | 0.07       | 193    | No          | <0.01      |
|       | 35               | 206           | 189  | No          | 0.12       | 193    | No          | 0.1        | 195    | No          | <0.01      |
|       | 40               | 206           | 191  | No          | 0.17       | 195    | No          | 0.16       | 198    | No          | 0.01       |
| 4     | 45               | 206           | 194  | No          | 0.24       | 197    | No          | 0.23       | 200    | No          | 0.04       |
|       | 50               | 206           | 196  | No          | 0.32       | 199    | No          | 0.31       | 202    | No          | 0.13       |
|       | 55               | 206           | 198  | No          | 0.41       | 202    | No          | 0.4        | 204    | No          | 0.28       |
|       | 60               | 206           | 200  | Yes         | 0.5        | 204    | Yes         | 0.5        | 207    | Yes         | 0.61       |
|       | 65               | 206           | 203  | Yes         | 0.59       | 206    | Yes         | 0.6        | 209    | Yes         | 8.0        |
|       | 70               | 206           | 205  | Yes         | 0.68       | 209    | Yes         | 0.73       | 211    | Yes         | 0.92       |
|       | 75               | 206           | 208  | Yes         | 8.0        | 211    | Yes         | 0.77       | 214    | Yes         | 0.99       |
|       | 80               | 206           | 211  | Yes         | 0.86       | 214    | Yes         | 0.87       | 217    | Yes         | >0.99      |
|       | 85               | 206           | 215  | Yes         | 0.94       | 218    | Yes         | 0.95       | 220    | Yes         | >0.99      |

|       | 0, 1             |               |      | Fall        |            |        | Winter      |            |        | Spring      |            |
|-------|------------------|---------------|------|-------------|------------|--------|-------------|------------|--------|-------------|------------|
| Grade | Start Percentile | Spring<br>Cut | Fall | Projected P | roficiency | Winter | Projected P | roficiency | Spring | Projected P | roficiency |
|       | reiceillie       | Cut           | RIT  | Level 3     | Prob.      | RIT    | Level 3     | Prob.      | RIT    | Level 3     | Prob.      |
|       | 90               | 206           | 219  | Yes         | 0.97       | 222    | Yes         | 0.98       | 225    | Yes         | >0.99      |
|       | 95               | 206           | 226  | Yes         | >0.99      | 229    | Yes         | >0.99      | 231    | Yes         | >0.99      |
|       | 5                | 211           | 175  | No          | <0.01      | 178    | No          | <0.01      | 180    | No          | <0.01      |
|       | 10               | 211           | 181  | No          | <0.01      | 184    | No          | <0.01      | 186    | No          | <0.01      |
|       | 15               | 211           | 186  | No          | 0.01       | 189    | No          | 0.01       | 191    | No          | <0.01      |
|       | 20               | 211           | 189  | No          | 0.03       | 192    | No          | 0.03       | 194    | No          | <0.01      |
|       | 25               | 211           | 192  | No          | 0.06       | 195    | No          | 0.05       | 197    | No          | <0.01      |
|       | 30               | 211           | 195  | No          | 0.11       | 197    | No          | 0.08       | 199    | No          | <0.01      |
|       | 35               | 211           | 197  | No          | 0.16       | 200    | No          | 0.15       | 202    | No          | 0.01       |
|       | 40               | 211           | 199  | No          | 0.2        | 202    | No          | 0.22       | 204    | No          | 0.02       |
|       | 45               | 211           | 201  | No          | 0.27       | 204    | No          | 0.26       | 206    | No          | 0.08       |
| 5     | 50               | 211           | 204  | No          | 0.4        | 206    | No          | 0.35       | 208    | No          | 0.2        |
|       | 55               | 211           | 206  | No          | 0.45       | 209    | Yes         | 0.5        | 211    | Yes         | 0.5        |
|       | 60               | 211           | 208  | Yes         | 0.55       | 211    | Yes         | 0.55       | 213    | Yes         | 0.72       |
|       | 65               | 211           | 210  | Yes         | 0.64       | 213    | Yes         | 0.65       | 215    | Yes         | 0.87       |
|       | 70               | 211           | 213  | Yes         | 0.73       | 215    | Yes         | 0.74       | 217    | Yes         | 0.96       |
|       | 75               | 211           | 215  | Yes         | 8.0        | 218    | Yes         | 0.85       | 220    | Yes         | 0.99       |
|       | 80               | 211           | 218  | Yes         | 0.89       | 221    | Yes         | 0.92       | 223    | Yes         | >0.99      |
|       | 85               | 211           | 222  | Yes         | 0.94       | 224    | Yes         | 0.96       | 226    | Yes         | >0.99      |
|       | 90               | 211           | 226  | Yes         | 0.98       | 228    | Yes         | 0.99       | 230    | Yes         | >0.99      |
|       | 95               | 211           | 232  | Yes         | >0.99      | 235    | Yes         | >0.99      | 237    | Yes         | >0.99      |
|       | 5                | 216           | 181  | No          | <0.01      | 183    | No          | <0.01      | 185    | No          | <0.01      |
|       | 10               | 216           | 187  | No          | <0.01      | 189    | No          | <0.01      | 191    | No          | <0.01      |
|       | 15               | 216           | 191  | No          | 0.01       | 193    | No          | 0.01       | 195    | No          | <0.01      |
| 6     | 20               | 216           | 195  | No          | 0.03       | 197    | No          | 0.02       | 198    | No          | <0.01      |
|       | 25               | 216           | 198  | No          | 0.06       | 199    | No          | 0.04       | 201    | No          | <0.01      |
|       | 30               | 216           | 200  | No          | 0.07       | 202    | No          | 0.06       | 203    | No          | <0.01      |
|       | 35               | 216           | 202  | No          | 0.11       | 204    | No          | 0.1        | 206    | No          | <0.01      |

|       | 011              | 0             |      | Fall        |            |        | Winter      |            |        | Spring      |            |
|-------|------------------|---------------|------|-------------|------------|--------|-------------|------------|--------|-------------|------------|
| Grade | Start Percentile | Spring<br>Cut | Fall | Projected P | roficiency | Winter | Projected P | roficiency | Spring | Projected P | roficiency |
|       | 1 Groentile      | Out           | RIT  | Level 3     | Prob.      | RIT    | Level 3     | Prob.      | RIT    | Level 3     | Prob.      |
|       | 40               | 216           | 205  | No          | 0.2        | 206    | No          | 0.16       | 208    | No          | 0.01       |
|       | 45               | 216           | 207  | No          | 0.23       | 209    | No          | 0.26       | 210    | No          | 0.04       |
|       | 50               | 216           | 209  | No          | 0.31       | 211    | No          | 0.31       | 212    | No          | 0.13       |
|       | 55               | 216           | 211  | No          | 0.4        | 213    | No          | 0.4        | 214    | No          | 0.28       |
|       | 60               | 216           | 213  | Yes         | 0.5        | 215    | Yes         | 0.5        | 216    | Yes         | 0.5        |
|       | 65               | 216           | 215  | Yes         | 0.55       | 217    | Yes         | 0.6        | 218    | Yes         | 0.72       |
|       | 70               | 216           | 218  | Yes         | 0.69       | 219    | Yes         | 0.69       | 221    | Yes         | 0.92       |
|       | 75               | 216           | 220  | Yes         | 0.77       | 222    | Yes         | 0.81       | 223    | Yes         | 0.98       |
|       | 80               | 216           | 223  | Yes         | 0.86       | 225    | Yes         | 0.9        | 226    | Yes         | >0.99      |
|       | 85               | 216           | 226  | Yes         | 0.93       | 228    | Yes         | 0.95       | 229    | Yes         | >0.99      |
|       | 90               | 216           | 231  | Yes         | 0.98       | 232    | Yes         | 0.98       | 233    | Yes         | >0.99      |
|       | 95               | 216           | 237  | Yes         | >0.99      | 238    | Yes         | >0.99      | 239    | Yes         | >0.99      |
|       | 5                | 218           | 185  | No          | <0.01      | 186    | No          | <0.01      | 187    | No          | <0.01      |
|       | 10               | 218           | 191  | No          | 0.01       | 192    | No          | <0.01      | 193    | No          | <0.01      |
|       | 15               | 218           | 195  | No          | 0.02       | 196    | No          | 0.01       | 197    | No          | <0.01      |
|       | 20               | 218           | 198  | No          | 0.03       | 200    | No          | 0.03       | 201    | No          | <0.01      |
|       | 25               | 218           | 201  | No          | 0.06       | 202    | No          | 0.04       | 203    | No          | <0.01      |
|       | 30               | 218           | 204  | No          | 0.12       | 205    | No          | 0.09       | 206    | No          | <0.01      |
|       | 35               | 218           | 206  | No          | 0.15       | 207    | No          | 0.14       | 208    | No          | <0.01      |
| 7     | 40               | 218           | 208  | No          | 0.21       | 210    | No          | 0.23       | 211    | No          | 0.02       |
| 1     | 45               | 218           | 210  | No          | 0.28       | 212    | No          | 0.27       | 213    | No          | 0.08       |
|       | 50               | 218           | 212  | No          | 0.36       | 214    | No          | 0.36       | 215    | No          | 0.2        |
|       | 55               | 218           | 214  | No          | 0.41       | 216    | No          | 0.45       | 217    | No          | 0.39       |
|       | 60               | 218           | 217  | Yes         | 0.55       | 218    | Yes         | 0.55       | 219    | Yes         | 0.61       |
|       | 65               | 218           | 219  | Yes         | 0.64       | 220    | Yes         | 0.64       | 221    | Yes         | 0.8        |
|       | 70               | 218           | 221  | Yes         | 0.72       | 223    | Yes         | 0.77       | 224    | Yes         | 0.96       |
|       | 75               | 218           | 224  | Yes         | 0.82       | 225    | Yes         | 0.84       | 226    | Yes         | 0.99       |
|       | 80               | 218           | 226  | Yes         | 0.88       | 228    | Yes         | 0.91       | 229    | Yes         | >0.99      |

|       | 24 4             |               |      | Fall        |            |        | Winter      |            |        | Spring      |            |
|-------|------------------|---------------|------|-------------|------------|--------|-------------|------------|--------|-------------|------------|
| Grade | Start Percentile | Spring<br>Cut | Fall | Projected P | roficiency | Winter | Projected P | roficiency | Spring | Projected P | roficiency |
|       | reiceillie       | Cut           | RIT  | Level 3     | Prob.      | RIT    | Level 3     | Prob.      | RIT    | Level 3     | Prob.      |
|       | 85               | 218           | 230  | Yes         | 0.95       | 231    | Yes         | 0.96       | 232    | Yes         | >0.99      |
|       | 90               | 218           | 234  | Yes         | 0.98       | 235    | Yes         | 0.99       | 237    | Yes         | >0.99      |
|       | 95               | 218           | 240  | Yes         | >0.99      | 241    | Yes         | >0.99      | 243    | Yes         | >0.99      |
|       | 5                | 222           | 188  | No          | <0.01      | 189    | No          | <0.01      | 190    | No          | <0.01      |
|       | 10               | 222           | 194  | No          | <0.01      | 195    | No          | <0.01      | 196    | No          | <0.01      |
|       | 15               | 222           | 198  | No          | 0.02       | 199    | No          | 0.01       | 200    | No          | <0.01      |
|       | 20               | 222           | 201  | No          | 0.03       | 203    | No          | 0.03       | 203    | No          | <0.01      |
|       | 25               | 222           | 204  | No          | 0.06       | 205    | No          | 0.04       | 206    | No          | <0.01      |
|       | 30               | 222           | 207  | No          | 0.09       | 208    | No          | 0.08       | 209    | No          | <0.01      |
|       | 35               | 222           | 209  | No          | 0.13       | 210    | No          | 0.12       | 211    | No          | <0.01      |
|       | 40               | 222           | 211  | No          | 0.18       | 213    | No          | 0.17       | 213    | No          | 0.01       |
|       | 45               | 222           | 214  | No          | 0.25       | 215    | No          | 0.24       | 216    | No          | 0.04       |
| 8     | 50               | 222           | 216  | No          | 0.33       | 217    | No          | 0.32       | 218    | No          | 0.13       |
|       | 55               | 222           | 218  | No          | 0.41       | 219    | No          | 0.41       | 220    | No          | 0.28       |
|       | 60               | 222           | 220  | Yes         | 0.5        | 221    | Yes         | 0.5        | 222    | Yes         | 0.5        |
|       | 65               | 222           | 222  | Yes         | 0.59       | 223    | Yes         | 0.59       | 224    | Yes         | 0.72       |
|       | 70               | 222           | 225  | Yes         | 0.71       | 226    | Yes         | 0.72       | 227    | Yes         | 0.92       |
|       | 75               | 222           | 227  | Yes         | 0.79       | 228    | Yes         | 8.0        | 229    | Yes         | 0.98       |
|       | 80               | 222           | 230  | Yes         | 0.87       | 231    | Yes         | 0.88       | 232    | Yes         | >0.99      |
|       | 85               | 222           | 233  | Yes         | 0.93       | 235    | Yes         | 0.95       | 236    | Yes         | >0.99      |
|       | 90               | 222           | 238  | Yes         | 0.98       | 239    | Yes         | 0.98       | 240    | Yes         | >0.99      |
|       | 95               | 222           | 244  | Yes         | >0.99      | 245    | Yes         | >0.99      | 246    | Yes         | >0.99      |

Table 3.9. Proficiency Projection Based on RIT Scores—Mathematics

|       | 044              | 0             |      | Fall        |            |        | Winter      |            |        | Spring      |            |
|-------|------------------|---------------|------|-------------|------------|--------|-------------|------------|--------|-------------|------------|
| Grade | Start Percentile | Spring<br>Cut | Fall | Projected P | roficiency | Winter | Projected P | roficiency | Spring | Projected P | roficiency |
|       | rercentile       | Cut           | RIT  | Level 3     | Prob.      | RIT    | Level 3     | Prob.      | RIT    | Level 3     | Prob.      |
|       | 5                | 191           | 147  | No          | <0.01      | 155    | No          | <0.01      | 161    | No          | <0.01      |
|       | 10               | 191           | 153  | No          | 0.01       | 161    | No          | <0.01      | 167    | No          | <0.01      |
|       | 15               | 191           | 157  | No          | 0.01       | 165    | No          | 0.01       | 171    | No          | <0.01      |
|       | 20               | 191           | 160  | No          | 0.03       | 168    | No          | 0.02       | 174    | No          | <0.01      |
|       | 25               | 191           | 162  | No          | 0.06       | 171    | No          | 0.04       | 177    | No          | <0.01      |
|       | 30               | 191           | 165  | No          | 0.09       | 173    | No          | 0.07       | 179    | No          | <0.01      |
|       | 35               | 191           | 167  | No          | 0.14       | 175    | No          | 0.12       | 181    | No          | <0.01      |
|       | 40               | 191           | 169  | No          | 0.2        | 177    | No          | 0.18       | 183    | No          | 0.01       |
|       | 45               | 191           | 171  | No          | 0.27       | 179    | No          | 0.21       | 185    | No          | 0.04       |
| 2     | 50               | 191           | 173  | No          | 0.36       | 181    | No          | 0.3        | 187    | No          | 0.13       |
|       | 55               | 191           | 175  | No          | 0.4        | 183    | No          | 0.4        | 189    | No          | 0.28       |
|       | 60               | 191           | 177  | Yes         | 0.5        | 185    | Yes         | 0.5        | 192    | Yes         | 0.61       |
|       | 65               | 191           | 179  | Yes         | 0.6        | 187    | Yes         | 0.6        | 194    | Yes         | 0.8        |
|       | 70               | 191           | 181  | Yes         | 0.69       | 189    | Yes         | 0.65       | 196    | Yes         | 0.92       |
|       | 75               | 191           | 183  | Yes         | 0.77       | 192    | Yes         | 0.79       | 198    | Yes         | 0.98       |
|       | 80               | 191           | 186  | Yes         | 0.84       | 194    | Yes         | 0.86       | 201    | Yes         | >0.99      |
|       | 85               | 191           | 189  | Yes         | 0.91       | 197    | Yes         | 0.93       | 204    | Yes         | >0.99      |
|       | 90               | 191           | 193  | Yes         | 0.96       | 201    | Yes         | 0.97       | 208    | Yes         | >0.99      |
|       | 95               | 191           | 198  | Yes         | 0.99       | 207    | Yes         | >0.99      | 214    | Yes         | >0.99      |
|       | 5                | 203           | 158  | No          | <0.01      | 166    | No          | <0.01      | 171    | No          | <0.01      |
|       | 10               | 203           | 164  | No          | <0.01      | 172    | No          | <0.01      | 177    | No          | <0.01      |
|       | 15               | 203           | 168  | No          | 0.01       | 176    | No          | <0.01      | 181    | No          | <0.01      |
| 3     | 20               | 203           | 171  | No          | 0.01       | 179    | No          | 0.01       | 185    | No          | <0.01      |
| J     | 25               | 203           | 174  | No          | 0.04       | 182    | No          | 0.03       | 188    | No          | <0.01      |
|       | 30               | 203           | 176  | No          | 0.06       | 184    | No          | 0.05       | 190    | No          | <0.01      |
|       | 35               | 203           | 178  | No          | 0.1        | 186    | No          | 0.08       | 193    | No          | <0.01      |
|       | 40               | 203           | 180  | No          | 0.15       | 189    | No          | 0.17       | 195    | No          | 0.01       |

|       | 04 1                | 0             |      | Fall        |            |        | Winter      |            |        | Spring      |            |
|-------|---------------------|---------------|------|-------------|------------|--------|-------------|------------|--------|-------------|------------|
| Grade | Start<br>Percentile | Spring<br>Cut | Fall | Projected P | roficiency | Winter | Projected P | roficiency | Spring | Projected P | roficiency |
|       | i ercentile         | Out           | RIT  | Level 3     | Prob.      | RIT    | Level 3     | Prob.      | RIT    | Level 3     | Prob.      |
|       | 45                  | 203           | 182  | No          | 0.22       | 191    | No          | 0.24       | 197    | No          | 0.04       |
|       | 50                  | 203           | 184  | No          | 0.3        | 193    | No          | 0.29       | 199    | No          | 0.13       |
|       | 55                  | 203           | 186  | No          | 0.4        | 195    | No          | 0.39       | 201    | No          | 0.28       |
|       | 60                  | 203           | 188  | Yes         | 0.5        | 197    | Yes         | 0.5        | 203    | Yes         | 0.5        |
|       | 65                  | 203           | 190  | Yes         | 0.6        | 199    | Yes         | 0.61       | 206    | Yes         | 8.0        |
|       | 70                  | 203           | 192  | Yes         | 0.7        | 201    | Yes         | 0.71       | 208    | Yes         | 0.92       |
|       | 75                  | 203           | 195  | Yes         | 0.81       | 204    | Yes         | 0.83       | 211    | Yes         | 0.99       |
|       | 80                  | 203           | 197  | Yes         | 0.87       | 206    | Yes         | 0.89       | 213    | Yes         | >0.99      |
|       | 85                  | 203           | 200  | Yes         | 0.94       | 210    | Yes         | 0.95       | 217    | Yes         | >0.99      |
|       | 90                  | 203           | 204  | Yes         | 0.98       | 214    | Yes         | 0.99       | 221    | Yes         | >0.99      |
|       | 95                  | 203           | 210  | Yes         | >0.99      | 220    | Yes         | >0.99      | 227    | Yes         | >0.99      |
|       | 5                   | 218           | 171  | No          | <0.01      | 176    | No          | <0.01      | 180    | No          | <0.01      |
|       | 10                  | 218           | 177  | No          | <0.01      | 183    | No          | <0.01      | 187    | No          | <0.01      |
|       | 15                  | 218           | 181  | No          | <0.01      | 187    | No          | <0.01      | 191    | No          | <0.01      |
|       | 20                  | 218           | 184  | No          | <0.01      | 190    | No          | <0.01      | 195    | No          | <0.01      |
|       | 25                  | 218           | 186  | No          | 0.01       | 193    | No          | <0.01      | 198    | No          | <0.01      |
|       | 30                  | 218           | 189  | No          | 0.02       | 196    | No          | 0.01       | 201    | No          | <0.01      |
|       | 35                  | 218           | 191  | No          | 0.04       | 198    | No          | 0.02       | 203    | No          | <0.01      |
|       | 40                  | 218           | 193  | No          | 0.07       | 200    | No          | 0.04       | 206    | No          | <0.01      |
| 4     | 45                  | 218           | 195  | No          | 0.11       | 202    | No          | 0.08       | 208    | No          | <0.01      |
|       | 50                  | 218           | 197  | No          | 0.16       | 204    | No          | 0.13       | 210    | No          | 0.01       |
|       | 55                  | 218           | 199  | No          | 0.23       | 207    | No          | 0.24       | 212    | No          | 0.04       |
|       | 60                  | 218           | 201  | No          | 0.31       | 209    | No          | 0.28       | 215    | No          | 0.2        |
|       | 65                  | 218           | 203  | No          | 0.4        | 211    | No          | 0.39       | 217    | No          | 0.39       |
|       | 70                  | 218           | 205  | Yes         | 0.5        | 213    | Yes         | 0.5        | 220    | Yes         | 0.72       |
|       | 75                  | 218           | 208  | Yes         | 0.65       | 216    | Yes         | 0.67       | 222    | Yes         | 0.87       |
|       | 80                  | 218           | 210  | Yes         | 0.73       | 219    | Yes         | 8.0        | 225    | Yes         | 0.98       |
|       | 85                  | 218           | 214  | Yes         | 0.87       | 222    | Yes         | 0.9        | 229    | Yes         | >0.99      |

|       | Otout            | Om min a      |      | Fall        |            |        | Winter      |            |        | Spring      | _          |
|-------|------------------|---------------|------|-------------|------------|--------|-------------|------------|--------|-------------|------------|
| Grade | Start Percentile | Spring<br>Cut | Fall | Projected P | roficiency | Winter | Projected P | roficiency | Spring | Projected P | roficiency |
|       | 1 Crocitiic      | Out           | RIT  | Level 3     | Prob.      | RIT    | Level 3     | Prob.      | RIT    | Level 3     | Prob.      |
|       | 90               | 218           | 217  | Yes         | 0.93       | 226    | Yes         | 0.97       | 233    | Yes         | >0.99      |
|       | 95               | 218           | 223  | Yes         | 0.99       | 232    | Yes         | >0.99      | 240    | Yes         | >0.99      |
|       | 5                | 227           | 180  | No          | <0.01      | 183    | No          | <0.01      | 186    | No          | <0.01      |
|       | 10               | 227           | 185  | No          | <0.01      | 189    | No          | <0.01      | 192    | No          | <0.01      |
|       | 15               | 227           | 189  | No          | <0.01      | 194    | No          | <0.01      | 197    | No          | <0.01      |
|       | 20               | 227           | 193  | No          | <0.01      | 197    | No          | <0.01      | 200    | No          | <0.01      |
|       | 25               | 227           | 195  | No          | <0.01      | 200    | No          | <0.01      | 204    | No          | <0.01      |
|       | 30               | 227           | 198  | No          | 0.01       | 203    | No          | <0.01      | 206    | No          | <0.01      |
|       | 35               | 227           | 200  | No          | 0.01       | 205    | No          | 0.01       | 209    | No          | <0.01      |
|       | 40               | 227           | 202  | No          | 0.03       | 207    | No          | 0.01       | 211    | No          | <0.01      |
|       | 45               | 227           | 204  | No          | 0.05       | 210    | No          | 0.03       | 214    | No          | <0.01      |
| 5     | 50               | 227           | 206  | No          | 0.08       | 212    | No          | 0.06       | 216    | No          | <0.01      |
|       | 55               | 227           | 208  | No          | 0.12       | 214    | No          | 0.1        | 218    | No          | 0.01       |
|       | 60               | 227           | 210  | No          | 0.19       | 216    | No          | 0.16       | 221    | No          | 0.04       |
|       | 65               | 227           | 212  | No          | 0.26       | 219    | No          | 0.28       | 223    | No          | 0.13       |
|       | 70               | 227           | 215  | No          | 0.4        | 221    | No          | 0.39       | 226    | No          | 0.39       |
|       | 75               | 227           | 217  | Yes         | 0.5        | 224    | Yes         | 0.56       | 228    | Yes         | 0.61       |
|       | 80               | 227           | 220  | Yes         | 0.65       | 226    | Yes         | 0.67       | 232    | Yes         | 0.92       |
|       | 85               | 227           | 223  | Yes         | 0.78       | 230    | Yes         | 0.84       | 235    | Yes         | 0.99       |
|       | 90               | 227           | 227  | Yes         | 0.9        | 234    | Yes         | 0.94       | 240    | Yes         | >0.99      |
|       | 95               | 227           | 233  | Yes         | 0.99       | 240    | Yes         | 0.99       | 246    | Yes         | >0.99      |
|       | 5                | 230           | 184  | No          | <0.01      | 187    | No          | <0.01      | 190    | No          | <0.01      |
|       | 10               | 230           | 190  | No          | <0.01      | 194    | No          | <0.01      | 197    | No          | <0.01      |
|       | 15               | 230           | 194  | No          | <0.01      | 198    | No          | <0.01      | 201    | No          | <0.01      |
| 6     | 20               | 230           | 197  | No          | <0.01      | 201    | No          | <0.01      | 205    | No          | <0.01      |
|       | 25               | 230           | 199  | No          | <0.01      | 204    | No          | <0.01      | 208    | No          | <0.01      |
|       | 30               | 230           | 202  | No          | 0.01       | 207    | No          | 0.01       | 211    | No          | <0.01      |
|       | 35               | 230           | 204  | No          | 0.02       | 209    | No          | 0.01       | 213    | No          | <0.01      |

| Grade | Start<br>Percentile | Spring<br>Cut | Fall |                       |       | Winter                       |         |       | Spring                       |         |       |
|-------|---------------------|---------------|------|-----------------------|-------|------------------------------|---------|-------|------------------------------|---------|-------|
|       |                     |               | Fall | Projected Proficiency |       | Winter Projected Proficiency |         |       | Spring Projected Proficiency |         |       |
|       | reicentile          | Cut           | RIT  | Level 3               | Prob. | RIT                          | Level 3 | Prob. | RIT                          | Level 3 | Prob. |
|       | 40                  | 230           | 206  | No                    | 0.04  | 212                          | No      | 0.03  | 216                          | No      | <0.01 |
|       | 45                  | 230           | 208  | No                    | 0.07  | 214                          | No      | 0.05  | 218                          | No      | <0.01 |
|       | 50                  | 230           | 210  | No                    | 0.11  | 216                          | No      | 0.09  | 220                          | No      | <0.01 |
|       | 55                  | 230           | 212  | No                    | 0.16  | 218                          | No      | 0.14  | 223                          | No      | 0.02  |
|       | 60                  | 230           | 214  | No                    | 0.23  | 220                          | No      | 0.21  | 225                          | No      | 0.08  |
|       | 65                  | 230           | 216  | No                    | 0.31  | 223                          | No      | 0.34  | 227                          | No      | 0.2   |
|       | 70                  | 230           | 219  | No                    | 0.45  | 225                          | No      | 0.45  | 230                          | Yes     | 0.5   |
|       | 75                  | 230           | 221  | Yes                   | 0.6   | 228                          | Yes     | 0.61  | 233                          | Yes     | 8.0   |
|       | 80                  | 230           | 224  | Yes                   | 0.73  | 231                          | Yes     | 0.75  | 236                          | Yes     | 0.96  |
|       | 85                  | 230           | 227  | Yes                   | 0.84  | 234                          | Yes     | 0.86  | 239                          | Yes     | 0.99  |
|       | 90                  | 230           | 231  | Yes                   | 0.93  | 238                          | Yes     | 0.95  | 244                          | Yes     | >0.99 |
|       | 95                  | 230           | 237  | Yes                   | 0.99  | 245                          | Yes     | >0.99 | 251                          | Yes     | >0.99 |
|       | 5                   | 234           | 189  | No                    | <0.01 | 191                          | No      | <0.01 | 192                          | No      | <0.01 |
|       | 10                  | 234           | 195  | No                    | <0.01 | 197                          | No      | <0.01 | 199                          | No      | <0.01 |
| 7     | 15                  | 234           | 199  | No                    | <0.01 | 202                          | No      | <0.01 | 204                          | No      | <0.01 |
|       | 20                  | 234           | 203  | No                    | <0.01 | 206                          | No      | <0.01 | 208                          | No      | <0.01 |
|       | 25                  | 234           | 206  | No                    | 0.01  | 209                          | No      | <0.01 | 211                          | No      | <0.01 |
|       | 30                  | 234           | 208  | No                    | 0.01  | 211                          | No      | <0.01 | 214                          | No      | <0.01 |
|       | 35                  | 234           | 211  | No                    | 0.03  | 214                          | No      | 0.01  | 216                          | No      | <0.01 |
|       | 40                  | 234           | 213  | No                    | 0.04  | 216                          | No      | 0.02  | 219                          | No      | <0.01 |
|       | 45                  | 234           | 215  | No                    | 0.07  | 219                          | No      | 0.06  | 221                          | No      | <0.01 |
|       | 50                  | 234           | 217  | No                    | 0.11  | 221                          | No      | 0.1   | 224                          | No      | <0.01 |
|       | 55                  | 234           | 219  | No                    | 0.17  | 223                          | No      | 0.15  | 226                          | No      | 0.01  |
|       | 60                  | 234           | 222  | No                    | 0.27  | 226                          | No      | 0.26  | 229                          | No      | 0.08  |
|       | 65                  | 234           | 224  | No                    | 0.36  | 228                          | No      | 0.35  | 231                          | No      | 0.2   |
|       | 70                  | 234           | 226  | No                    | 0.45  | 231                          | No      | 0.45  | 234                          | Yes     | 0.5   |
|       | 75                  | 234           | 229  | Yes                   | 0.6   | 233                          | Yes     | 0.55  | 237                          | Yes     | 8.0   |
|       | 80                  | 234           | 232  | Yes                   | 0.73  | 236                          | Yes     | 0.7   | 240                          | Yes     | 0.96  |

| Grade | Start<br>Percentile | Spring<br>Cut | Fall                       |         |            | Winter |                       |       | Spring |                       |        |
|-------|---------------------|---------------|----------------------------|---------|------------|--------|-----------------------|-------|--------|-----------------------|--------|
|       |                     |               | Fall Projected Proficiency |         | roficiency | Winter | Projected Proficiency |       | Spring | Projected Proficiency |        |
|       |                     |               | RIT                        | Level 3 | Prob.      | RIT    | Level 3               | Prob. | RIT    | Level 3               | Prob.  |
|       | 85                  | 234           | 235                        | Yes     | 0.83       | 240    | Yes                   | 0.85  | 244    | Yes                   | >0.99  |
|       | 90                  | 234           | 239                        | Yes     | 0.93       | 245    | Yes                   | 0.96  | 249    | Yes                   | >0.99  |
|       | 95                  | 234           | 246                        | Yes     | 0.99       | 251    | Yes                   | 0.99  | 256    | Yes                   | >0.99  |
|       | 5                   | 241           | 192                        | No      | <0.01      | 194    | No                    | <0.01 | 196    | No                    | <0.01  |
|       | 10                  | 241           | 199                        | No      | <0.01      | 201    | No                    | <0.01 | 203    | No                    | <0.01  |
|       | 15                  | 241           | 203                        | No      | <0.01      | 206    | No                    | <0.01 | 208    | No                    | <0.01  |
|       | 20                  | 241           | 207                        | No      | <0.01      | 210    | No                    | <0.01 | 212    | No                    | <0.01  |
|       | 25                  | 241           | 210                        | No      | <0.01      | 213    | No                    | <0.01 | 215    | No                    | <0.01  |
|       | 30                  | 241           | 212                        | No      | 0.01       | 216    | No                    | <0.01 | 218    | No                    | <0.01  |
|       | 35                  | 241           | 215                        | No      | 0.01       | 219    | No                    | 0.01  | 221    | No                    | <0.01  |
|       | 40                  | 241           | 217                        | No      | 0.03       | 221    | No                    | 0.02  | 224    | No                    | <0.01  |
|       | 45                  | 241           | 220                        | No      | 0.05       | 224    | No                    | 0.04  | 226    | No                    | < 0.01 |
| 8     | 50                  | 241           | 222                        | No      | 0.08       | 226    | No                    | 0.07  | 229    | No                    | <0.01  |
|       | 55                  | 241           | 224                        | No      | 0.13       | 228    | No                    | 0.1   | 231    | No                    | < 0.01 |
|       | 60                  | 241           | 227                        | No      | 0.21       | 231    | No                    | 0.19  | 234    | No                    | 0.02   |
|       | 65                  | 241           | 229                        | No      | 0.28       | 233    | No                    | 0.26  | 237    | No                    | 0.13   |
|       | 70                  | 241           | 232                        | No      | 0.41       | 236    | No                    | 0.4   | 239    | No                    | 0.28   |
|       | 75                  | 241           | 234                        | Yes     | 0.5        | 239    | Yes                   | 0.5   | 242    | Yes                   | 0.61   |
|       | 80                  | 241           | 237                        | Yes     | 0.63       | 242    | Yes                   | 0.65  | 246    | Yes                   | 0.92   |
|       | 85                  | 241           | 241                        | Yes     | 0.79       | 246    | Yes                   | 0.81  | 250    | Yes                   | 0.99   |
|       | 90                  | 241           | 246                        | Yes     | 0.92       | 251    | Yes                   | 0.93  | 255    | Yes                   | >0.99  |
|       | 95                  | 241           | 252                        | Yes     | 0.98       | 258    | Yes                   | 0.99  | 262    | Yes                   | >0.99  |

# References

- Kolen, M. J., & Brennan, R. L. (2004). *Test equating, scaling, and linking: Methods and practices* (2nd ed.). Springer. <a href="https://doi.org/10.1007/978-1-4939-0317-7">https://doi.org/10.1007/978-1-4939-0317-7</a>
- Lewis, K., & Kuhfeld, M. (2024). *MAP Growth with enhanced item-selection algorithm: Updates on score comparability*. NWEA Research Report. NWEA.

  <a href="https://www.nwea.org/uploads/Research-MAP-Growth-with-enhanced-item-selection-algorithm-updates-on-score-compatibility">https://www.nwea.org/uploads/Research-MAP-Growth-with-enhanced-item-selection-algorithm-updates-on-score-compatibility</a> NWEA Research Guide.pdf
- Lumley, T. (2019). Survey: Analysis of complex survey samples. (R package version 3.36) [Computer software]. Available from <a href="https://CRAN.R-project.org/package=survey">https://CRAN.R-project.org/package=survey</a>.
- Meyer, J. P., Hu, A. H., & Li, S. (2023). *Content Proximity Spring 2022 Pilot Study Research Brief.* NWEA Research Report. NWEA. <a href="https://www.nwea.org/uploads/Content-Proximity-Project-and-Pilot-Study-Spring-2022-Research-Report.pdf">https://www.nwea.org/uploads/Content-Proximity-Project-and-Pilot-Study-Spring-2022-Research-Report.pdf</a>
- NWEA. (2025). *MAP Growth achievement status and growth norms for students and schools*. [Tech Rep.]. NWEA.
- Pommerich, M., Hanson, B., Harris, D., & Sconing, J. (2004). Issues in conducting linkage between distinct tests. *Applied Psychological Measurement*, *28*(4), 247–273. https://doi.org/10.1177/0146621604265033