Predicting Performance on the Indiana Learning Evaluation Readiness Network (ILEARN) Based on NWEA MAP Growth Scores July 2025 NWEA Psychometrics and Analytics # **Linking Study Updates** | Date | Description | |---------|---| | 2020-07 | Conducted a linking study for grades 3–8 in mathematics and ELA and grade 4 and 6 science based on the 2020 norms and Spring 2019 data. | | 2025-07 | Updated the linking study based on the 2025 norms. | **Acknowledgements:** This report was made possible with the contributions of Yan Zhou, Ann Hu, Justin Schreiber, Christopher Wells, and Derek May. We appreciate our colleagues at NWEA and all our partners who provided data for the study. © 2025 NWEA. NWEA and MAP Growth are registered trademarks of NWEA in the U.S. and in other countries. All rights reserved. No part of this document may be modified or further distributed without written permission from NWEA. # **Table of Contents** | Executive Summary | | |--|----| | 1. Introduction | 5 | | 1.1. Purpose of the Study | 5 | | 1.2. Assessment Overview | | | 2. Methods | | | 2.1. Data Collection | 6 | | 2.2. Post-Stratification Weighting | | | 2.3. MAP Growth Cut Scores | | | 2.4. Classification Accuracy | | | 2.5. Proficiency Projections | 8 | | 3. Results | 9 | | 3.1. Study Sample | 9 | | 3.2. Descriptive Statistics | | | 3.3. MAP Growth Cut Scores | | | 3.4. Classification Accuracy | 16 | | 3.5. Proficiency Projections | 17 | | References | 30 | | | | | List of Tables | | | Table E.1. MAP Growth Cut Scores for ILEARN Proficiency | 1 | | Table E.2. Linking Study Sample | | | Table 2.1. Description of Classification Accuracy Summary Statistics | | | Table 3.1. Linking Study Sample Demographics (Unweighted) | | | Table 3.2. Spring 2019 ILEARN Student Population Demographics | | | Table 3.3. Linking Study Sample Demographics (Weighted) | 11 | | Table 3.4. Descriptive Statistics of Test Scores | 13 | | Table 3.5. MAP Growth Cut Scores—ELA/Reading | | | Table 3.6. MAP Growth Cut Scores—Mathematics | | | Table 3.7. MAP Growth Cut Scores—Science | | | Table 3.8. Classification Accuracy Results | | | Table 3.9. Proficiency Projection Based on RIT Scores—ELA/Reading | | | Table 3.10. Proficiency Projection Based on RIT Scores—Mathematics | | | Table 3.11. Proficiency Projection Based on RIT Scores—Science | 28 | | List of Figures | | | Figure E.1. Correlations Between MAP Growth and ILEARN | 3 | | Figure E.2. Accuracy of MAP Growth Classifications | | | , | | # **Executive Summary** To predict student achievement on the Indiana Learning Evaluation Readiness Network (ILEARN) assessments in grades 3–8 English language arts (ELA) and mathematics and grades 4 and 6 science, NWEA[®] conducted a linking study using Spring 2019 data to derive Rasch Unit (RIT) cut scores on the MAP[®] Growth[™] assessments that correspond to the ILEARN performance levels. With this information, educators can identify students at risk of failing to meet state proficiency standards early in the year and provide tailored educational interventions. The linking study has been updated since the previous version to incorporate the most recent 2025 NWEA MAP Growth norms (NWEA, 2025). Table E.1 presents the ILEARN *At Proficiency* performance level cut scores and the corresponding MAP Growth RIT cut scores that allow teachers to identify students who are on track for proficiency on the state summative test and those who are not. For example, the *At Proficiency* cut score on the ILEARN grade 3 ELA test is 5460. A grade 3 student with a MAP Growth reading RIT score of 189 in the fall is likely to meet proficiency on the ILEARN ELA test in the spring, whereas a grade 3 student with a MAP Growth reading RIT score lower than 189 in the fall is in jeopardy of not meeting proficiency. MAP Growth cut scores for grade 2 are also provided so that educators can track early learners' progress toward proficiency on the ILEARN test by grade 3. These cut scores were derived based on the grade 3 cuts and the 2025 NWEA growth norms for the adjacent grade (i.e., grades 2 to 3). **Table E.1. MAP Growth Cut Scores for ILEARN Proficiency** | Assessn | | At Pro | oficiency | Cut Sc | ores by | Grade | | | |---------------|----------|--------|-----------|--------|---------|-------|------|------| | ASSESSII | ileiit | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | ELA/Reading | g | | | | | | | | | ILEAR | N Spring | _ | 5460 | 5493 | 5524 | 5544 | 5568 | 5577 | | MAD | Fall | 178 | 189 | 205 | 217 | 221 | 231 | 240 | | MAP
Growth | Winter | 186 | 198 | 213 | 223 | 228 | 236 | 245 | | Glowin | Spring | 192 | 204 | 218 | 227 | 232 | 238 | 247 | | Mathematics | 3 | | | | | | | | | ILEARI | N Spring | - | 6425 | 6474 | 6510 | 6545 | 6562 | 6590 | | | Fall | 182 | 195 | 205 | 210 | 217 | 219 | 222 | | MAP
Growth | Winter | 188 | 200 | 208 | 213 | 218 | 220 | 223 | | Glowiii | Spring | 192 | 203 | 210 | 214 | 219 | 221 | 224 | | Science | | | | | | | | | | ILEARI | N Spring | - | - | 7506 | - | 7504 | - | - | | 1445 | Fall | _ | _ | 199 | _ | 209 | _ | _ | | MAP
Growth | Winter | _ | _ | 202 | _ | 211 | _ | _ | | Clowiii | Spring | _ | | 204 | | 212 | _ | - | Please note that the results in this report may differ from those found in the NWEA reporting system for individual districts. The typical growth scores from fall to spring or winter to spring used in this report are based on the default instructional weeks most encountered for each term (i.e., Weeks 4, 20, and 32 for fall, winter, and spring, respectively). However, instructional weeks often vary by district, so the cut scores in this report may differ slightly from the MAP Growth score reports that reflect the specific instructional weeks set by partners. #### E.1. Assessment Overview The ILEARN grades 3–8 ELA and mathematics and grades 4 and 6 science tests are Indiana's state summative assessments aligned to the Indiana Academic Standards. Based on their test scores, students are placed into one of four performance levels: *Below Proficiency*, *Approaching Proficiency*, *At Proficiency*, and *Above Proficiency*. These tests are used to provide evidence of student achievement in ELA, mathematics, and science for various test score uses, such as meeting state and federal accountability requirements. The *At Proficiency* cut score demarks the minimum level of achievement considered to be proficient. MAP Growth tests are adaptive interim assessments aligned to state-specific content standards and administered in the fall, winter, and spring. Scores are reported on the RIT vertical scale with a range of 100–350. ## **E.2. Linking Methods** Based on scores from the Spring 2019 test administration, the equipercentile linking method was used to identify the spring MAP Growth scores that correspond to the spring ILEARN performance level cut scores. MAP Growth spring cut scores for grade 2 were then derived from the spring cuts for grade 3 and the growth norms for the adjacent grade (i.e., grades 2 to 3). Similarly, the MAP Growth cut scores for the fall and winter administrations of all grades were derived from the spring administration cuts and the growth norms for either fall to spring or winter to spring, respectively. The spring cuts¹ for mathematics were adjusted for score alignment before deriving the cuts for grade 2 spring and for all grades' fall and winter administrations. ## E.3. Student Sample tests are collected. Only students who took both the MAP Growth and ILEARN assessments in Spring 2019 were included in the study sample. Table E.2 presents the weighted numbers of Indiana students from 199 districts and 869 schools who were included in the linking study. The linking study sample is voluntary, so the data can only include student scores from partners who share their data. Also, not all students in a state take MAP Growth. The sample may therefore not represent the general student population as well as it should. To ensure that the linking study sample represents the state student population in terms of race, sex, and performance level, weighting (i.e., a statistical method that matches the distributions of the variables of interest to those of the target population) was applied to the sample. As a result, the RIT cuts derived from the study sample can be generalized to any student from the target population. All analyses in this study for grades 3–8 were conducted based on the weighted sample. This score adjustment will become unnecessary for future linking studies once the new data from EISA ¹ To enhance content validity, NWEA developed an Enhanced Item-Selection Algorithm (EISA) for the MAP Growth assessment to prioritize grade-level content. A pilot study (Meyer et al., 2023) showed that students taking MAP Growth with EISA demonstrated higher average math scores compared with those taking traditional MAP Growth. To improve score comparability, NWEA (Lewis & Kuhfeld, 2024) developed concordance tables to adjust mathematics scores from traditional assessments to align with scores from MAP Growth with EISA, or vice versa. Given that the data for this study were collected from traditional MAP Growth tests but that the results will be used for MAP Growth with EISA, the spring cuts for mathematics were adjusted using the concordance tables before being used to derive other cut scores. **Table E.2. Linking Study Sample** | Grade | # Students | | | | | | | | |-------|-------------|-------------|---------|--|--|--|--|--| | Grade | ELA/Reading | Mathematics | Science | | | | | | | 3 | 40,699 | 40,103 | - | | | | | | | 4 | 41,109 | 40,457 | 1,112 | | | | | | | 5 | 41,928 | 41,410 | _ | | | | | | | 6 | 41,224 | 40,638 | 2,808 | | | | | | | 7 | 40,209 | 40,047 | _ | | | | | | | 8 | 38,868 | 38,438 | _ | | | | | | ## E.4. Test Score Relationships
Correlations between MAP Growth RIT scores and ILEARN scores range from 0.79 to 0.91 across all content areas, as shown in Figure E.1. These values indicate a strong relationship among the scores, which is important validity evidence for the claim that MAP Growth scores are good predictors of performance on the ILEARN assessments. Figure E.1. Correlations Between MAP Growth and ILEARN #### E.5. Accuracy of MAP Growth Classifications Figure E.2 presents the classification accuracy statistics that show the proportion of students correctly classified by their RIT scores as proficient or not proficient on the ILEARN tests.² For example, the MAP Growth reading grade 3 *At Proficiency* cut score has a 0.83 accuracy rate, meaning it accurately classified student achievement on the state test for 83% of the sample. The results range from 0.80 to 0.89 across all content areas, indicating that RIT scores have a high accuracy rate of identifying student proficiency on the ILEARN tests. ² The classification accuracy calculations for the mathematics spring cuts were based on the concorded cut scores. 3 8 4 5 6 7 Mathematics by Grade Figure E.2. Accuracy of MAP Growth Classifications 4 5 6 7 Reading by Grade 3 4 6 Science by Grade 8 #### 1. Introduction ## 1.1. Purpose of the Study NWEA[®] is committed to providing partners with useful tools to help make inferences about student learning from MAP[®] Growth[™] test scores. One important use of MAP Growth results is to predict a student's performance on the state summative assessment at different times throughout the year. This allows educators and parents to determine if a student is on track in their learning to meet state standards by the end of the year or, given a student's learning profile, is on track to obtain rigorous, realistic growth in their content knowledge and skills. This report presents results from a linking study conducted by NWEA in July 2020 to statistically connect the scores of the Indiana Learning Evaluation Readiness Network (ILEARN) assessments in grades 3–8 English language arts (ELA) and mathematics and grades 4 and 6 science with Rasch Unit (RIT) scores from the MAP Growth assessments taken during the Spring 2019 term. The linking study has been updated since the previous version to incorporate the most recent 2025 NWEA MAP Growth norms (NWEA, 2025). In this updated study, MAP Growth cut scores are also included for grade 2 so that educators can track early learners' progress toward proficiency on the ILEARN test by grade 3. This report presents the following results: - 1. Student sample demographics - 2. Descriptive statistics of test scores - 3. MAP Growth cut scores that correspond to the ILEARN performance levels using the equipercentile linking procedure for the spring results and the 2025 norms for the fall and winter results - 4. Classification accuracy statistics to determine the degree to which MAP Growth accurately predicts student proficiency status on the ILEARN tests - 5. The probability of achieving grade-level proficiency on the ILEARN assessment based on MAP Growth RIT scores from fall, winter, and spring using the 2025 norms ## 1.2. Assessment Overview The ILEARN grades 3–8 ELA and mathematics and grades 4 and 6 science summative assessments are aligned to the Indiana Academic Standards. Each assessment has three cut scores (i.e., the minimum score a student must get on a test to be placed in a certain performance level) that distinguish between the following performance levels: *Below Proficiency, Approaching Proficiency, At Proficiency*, and *Above Proficiency*. The *At Proficiency* cut score demarks the minimum level of performance considered to be proficient for accountability purposes. MAP Growth interim assessments from NWEA are computer adaptive and aligned to state-specific content standards. Scores are reported on the RIT vertical scale with a range of 100–350. Each content area has its own scale. To aid the interpretation of scores, NWEA periodically conducts norming studies of student and school performance on MAP Growth. Achievement status norms show how well a student performed on the MAP Growth test compared with students in the norming group by associating the student's performance on the MAP Growth test, expressed as a RIT score, with a percentile ranking. Growth norms provide expected score gains across test administrations (e.g., the relative evaluation of a student's growth from fall to spring). The most recent norms study was conducted in 2025 (NWEA, 2025). #### 2. Methods #### 2.1. Data Collection This linking study is based on data from the Spring 2019 administrations of the MAP Growth and ILEARN assessments. NWEA requested that Indiana districts recruited to participate in the study share their student and score data for the target term. Districts also permitted NWEA to access students' associated MAP Growth scores from the NWEA in-house database. Once Indiana state score information was available to NWEA, each student's state testing record was matched to their MAP Growth score by using the student's first and last names, date of birth, student ID, and other available identifying information. Only students who took both the MAP Growth and ILEARN assessments in Spring 2019 were included in the study sample. ## 2.2. Post-Stratification Weighting Post-stratification weights were applied to the calculations to ensure that the linking study sample represented the state population in terms of race, sex, and performance level. These variables were selected because they are correlated with the student's academic achievement within this study and are often provided in the data for the state population. The weighted sample matches the target population as closely as possible for the key demographics and test score characteristics. Specifically, a raking procedure was used to calculate the post-stratification weights and improve the representativeness of the sample. Raking uses iterative procedures to obtain weights that match sample marginal distributions to known population margins. The following steps were taken during this process: - 1. Calculate marginal distributions of race, sex, and performance level for the sample and population. - 2. Calculate post-stratification weights with the rake function from the survey package in R (Lumley, 2019). - 3. Apply the weights to the sample before conducting the linking study analyses. #### 2.3. MAP Growth Cut Scores The equipercentile linking method (Kolen & Brennan, 2004) was used to identify the spring MAP Growth RIT scores that correspond to the spring ILEARN performance level cut scores. Spring cuts for grade 2 were derived based on the cuts for grade 3 and the 2025 NWEA growth norms. RIT fall and winter cut scores that predict proficiency on the spring ILEARN test were then projected using the 2025 growth norms. Percentile ranks are also provided that show how a nationally representative sample of students in the same grade scored on MAP Growth for each administration, which is an important interpretation of RIT test scores. This is useful for understanding (1) how student scores compare with peers nationwide and (2) the relative rigor of a state's performance level designations for its summative assessment. The MAP Growth spring cut scores for grades 3–8 could be calculated using the equipercentile linking method because that data are directly connected to the ILEARN spring data used in the study. The equipercentile linking procedure matches scores on the two scales that have the same percentile rank (i.e., the proportion of tests at or below each score). For example, let x represent a score on Test X (e.g., ILEARN). Its equipercentile equivalent score on Test Y (e.g., MAP Growth), $e_y(x)$, can be obtained through a cumulative-distribution-based linking function defined as: $$e_{\nu}(x) = G^{-1}[P(x)]$$ where $e_y(x)$ is the equipercentile equivalent of score x on the ILEARN tests on the scale of MAP Growth, P(x) is the percentile rank of a given score on the ILEARN tests, and G^{-1} is the inverse of the percentile rank function for MAP Growth that indicates the score on MAP Growth corresponding to a given percentile. Polynomial loglinear pre-smoothing was applied to reduce irregularities of the score distributions and equipercentile linking curve. The MAP Growth conditional growth norms provide students' expected score gains across terms, such as growth from fall or winter to spring within the same grade or from spring of a lower grade to the spring of the adjacent higher grade. This information can be used to calculate the fall and winter cut scores for grades 3–8 and the fall, winter, and spring cut scores for grade 2. The equation below was used to determine the previous term's or grade's MAP Growth score needed to reach the spring cut score, considering the expected growth associated with the previous RIT score: $$RIT_{PredSpring} = RIT_{previous} + g$$ #### where: - *RIT*_{PredSpring} is the predicted MAP Growth spring score, - RIT_{previous} is the previous term's or grade's RIT score, and - *g* is the expected growth from the previous RIT (e.g., fall or winter) to the spring RIT. To derive the spring cut scores for grade 2, the growth score from spring of one year to the next was used (i.e., the growth score from spring grade 2 to spring grade 3). The calculation of fall and winter cuts for grade 2 followed the same process as for the other grades. For example, the growth score from fall to spring in grade 2 was used to calculate the fall cuts for grade 2. ## 2.4. Classification Accuracy The degree to which MAP Growth predicts student proficiency status on the ILEARN tests can be described using classification accuracy statistics based on the MAP Growth spring cut scores that show the proportion of students correctly classified by their RIT scores as proficient (*At Proficiency* or *Above Proficiency*) or not proficient (*Below Proficiency* or
Approaching Proficiency). Table 2.1 describes the classification accuracy statistics provided in this report (Pommerich et al., 2004). The results are based on the Spring 2019 MAP Growth and ILEARN data for the *At Proficiency* cut score. **Table 2.1. Description of Classification Accuracy Summary Statistics** | Statistic | Description | Interpretation | |--|------------------------------------|--| | Overall
Classification
Accuracy Rate | (TP + TN) / (total
sample size) | Proportion of the study sample whose proficiency classification on the state test was correctly predicted by MAP Growth cut scores | | False Negative (FN) Rate | FN / (FN + TP) | Proportion of students identified by MAP Growth as not proficient in those observed as proficient on the state test | | False Positive (FP) Rate | FP / (FP + TN) | Proportion of students identified by MAP Growth as not proficient in those observed as not proficient on the state test | | Statistic | Description | Interpretation | |-------------------------------|---|--| | Sensitivity | TP / (TP + FN) | Proportion of students identified by MAP Growth as proficient in those observed as such on the state test | | Specificity | TN / (TN + FP) | Proportion of students identified by MAP Growth as not proficient in those observed as such on the state test | | Precision | TP / (TP + FP) | Proportion of students observed as proficient on the state test in those identified as such by the MAP Growth test | | Area Under the
Curve (AUC) | Area under the receiver operating characteristics (ROC) curve | How well MAP Growth cut scores separate the study sample into proficiency categories that match those from the state test cut scores. An AUC at or above 0.80 is considered "good" accuracy. | Note. FP = false positives; FN = false negatives; TP = true positives; TN = true negatives. # 2.5. Proficiency Projections Given that all test scores contain measurement errors, reaching the *At Proficiency* RIT cut does not guarantee that a student is proficient on the state test. Instead, it can be claimed that a student meeting the RIT cut score has a 50% chance of reaching proficiency on the state test, with their chances increasing the greater their score is from the cut. The proficiency projections indicate these probabilities for various RIT scores throughout the year. In addition to calculating the MAP Growth fall and winter cut scores (and the projected grade 2 cut scores), the MAP Growth conditional growth norms data were also used to calculate the probability of reaching proficiency on the ILEARN test based on a student's RIT scores from fall, winter, and spring. The equation below was used to calculate the probability of a student achieving *At Proficiency* on the ILEARN test based on their fall or winter RIT score: $$Pr(Achieving \ At \ Proficiency \ in \ spring | \ starting \ RIT) = \Phi\left(\frac{RIT_{previous} + g - RIT_{SpringCut}}{SD}\right)$$ #### where: - Φ is a standardized normal cumulative distribution, - RIT_{previous} is the student's RIT score in fall or winter, - g is the expected growth from the previous RIT (e.g., fall or winter) to the spring RIT, - RIT_{SpringCut} is the MAP Growth At Proficiency cut score for spring, and - SD is the conditional standard deviation of the expected growth, g. The equation below was used to estimate the probability of a student achieving *At Proficiency* on the ILEARN test based on their spring RIT score (RIT_{Spring}): $$Pr(Achieving \ At \ Proficiency \ in \ spring \ | \ spring \ RIT) = \Phi\left(\frac{RIT_{Spring} - RIT_{SpringCut}}{SE}\right)$$ where SE is the standard error of measurement for MAP Growth. ## 3. Results ## 3.1. Study Sample Only students who took both the MAP Growth and ILEARN assessments in Spring 2019 were included in the study sample. Data used in this study were collected from 199 districts and 869 schools in ILEARN. Table 3.1 presents the demographic distributions of race, sex, and performance level in the original unweighted study sample. Table 3.2 presents the distributions of the student population who took the Spring 2019 ILEARN tests (IDOE, 2019). Since the unweighted data are different from the general ILEARN population, post-stratification weights were applied to the linking study sample to improve its representativeness. Table 3.3 presents the demographic distributions of the sample after weighting, which are almost identical to the ILEARN student population distributions. The analyses in this study were therefore conducted based on the weighted sample. **Table 3.1. Linking Study Sample Demographics (Unweighted)** | Domos | wanhia Cuhawaun | | % | Student | s by Grad | de | | |---|-------------------------|--------|--------|---------|-----------|--|--------| | Demographic Subgroup | | 3 | 4 | 5 | 6 | 7 | 8 | | ELA/Reading | | | | | | | | | | Total N | 40,699 | 41,109 | 41,928 | 41,224 | 40,209 | 38,868 | | | Asian | 1.9 | 1.7 | 1.7 | 1.5 | 1.8 | 1.6 | | | Black | 12.7 | 12.5 | 12.5 | 12.2 | 12.4 | 12.0 | | Race | Hispanic | 14.0 | 14.2 | 14.6 | 14.5 | 14.0 | 13.8 | | Nace | Multiracial | 5.2 | 5.0 | 5.1 | 4.8 | 4.8 | 4.5 | | | Other | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.3 | | | White | 65.9 | 66.3 | 65.9 | 66.8 | 66.8 | 67.8 | | Sev | Female | 48.2 | 49.3 | 49.1 | 48.9 | 7
40,209
1.8
12.4
14.0
4.8
0.2 | 48.9 | | Oex | Male | 51.8 | 50.7 | 50.9 | 51.1 | 51.0 | 51.1 | | | Below Proficiency | 32.7 | 32.2 | 31.1 | 28.5 | 25.6 | 21.5 | | Performance | Approaching Proficiency | 23.1 | 24.5 | 24.6 | 26.0 | 27.0 | 29.7 | | Level | At Proficiency | 27.2 | 25.0 | 30.6 | 29.1 | 28.3 | 28.5 | | | Above Proficiency | 17.0 | 18.4 | 13.7 | 16.4 | 19.0 | 20.3 | | Mathematics | | | | | | | | | | Total N | 40,103 | 40,457 | 41,410 | 40,638 | | 38,438 | | | Asian | 1.9 | 1.8 | 1.8 | 1.5 | 1.8 | 1.6 | | | Black | 12.8 | 12.6 | 12.7 | 12.2 | 12.5 | 12.2 | | Performance
Level | Hispanic | 14.1 | 14.3 | 14.7 | 14.6 | 14.1 | 14.0 | | Nace | Multiracial | 5.2 | 5.0 | 5.1 | 4.8 | 4.8 | 4.5 | | Total N 40,699 41,109 41,928 41,224 41,224 41,224 41,224 41,224 41,224 41,224 41,224 41,224 41,224 41,224 41,224 41,224 41,224 41,224 41,224 41,224 41,225
41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 41,225 | 0.3 | 0.2 | 0.3 | | | | | | | White | 65.6 | 66.0 | 65.5 | 66.6 | 66.7 | 67.5 | | Sev | Female | 48.2 | 49.2 | 49.0 | 48.9 | 49.0 | 48.7 | | Sex Performance Level Mathematics Race Sex | Male | 51.8 | 50.8 | 51.0 | 51.1 | 51.0 | 51.3 | | | Below Proficiency | 24.3 | 26.6 | 29.0 | 31.8 | 32.6 | 35.0 | | | • | | | | 24.2 | | 28.4 | | Level | At Proficiency | 32.1 | 32.2 | 24.4 | 24.9 | 22.8 | 19.1 | | | Above Proficiency | 25.0 | 20.3 | 21.2 | 19.2 | 17.5 | 17.5 | | Science | | | | | | | | | Demographic Subgroup | | | % : | Students | by Grad | е | | |----------------------|-------------------------|---|-------|----------|---------|---|---| | Demoç | 3 | 4 | 5 | 6 | 7 | 8 | | | | Total N | I | 1,112 | - | 2,808 | - | _ | | | Asian | | 0.4 | _ | 1.2 | - | _ | | | Black | _ | 2.4 | _ | 3.8 | _ | _ | | Race | Hispanic | _ | 12.1 | _ | 13.0 | _ | _ | | Nace | Multiracial | _ | 5.8 | _ | 4.4 | _ | - | | | Other | _ | 0.1 | _ | 0.2 | _ | - | | | White | _ | 79.1 | _ | 77.3 | _ | - | | Sex | Female | _ | 46.1 | _ | 49.7 | - | - | | Sex | Male | _ | 53.9 | _ | 50.3 | _ | - | | Performance | Below Proficiency | _ | 23.8 | _ | 21.8 | - | - | | | Approaching Proficiency | _ | 19.7 | _ | 24.8 | _ | _ | | Level | At Proficiency | _ | 25.3 | _ | 31.7 | _ | - | | | Above Proficiency | _ | 31.2 | _ | 21.7 | _ | - | Table 3.2. Spring 2019 ILEARN Student Population Demographics | Demographic Subgroup | | | % | 6 Students | by Grade |) | | |----------------------|-------------------------|--------|--------|------------|----------|--------|--------| | Demog | grapnic Subgroup | 3 | 4 | 5 | 6 | 7 | 8 | | ELA/Reading | | | | | | | | | | Total N | 83,072 | 84,147 | 86,381 | 85,832 | 84,590 | 82,991 | | | Asian | 2.8 | 2.6 | 2.5 | 2.3 | 2.5 | 2.3 | | | Black | 12.6 | 12.5 | 12.5 | 12.2 | 12.1 | 11.7 | | Race | Hispanic | 13.1 | 13.3 | 13.3 | 13.3 | 12.8 | 12.4 | | Nace | Multiracial | 5.4 | 5.2 | 5.2 | 5.0 | 4.9 | 4.7 | | | Other | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | | | White | 65.9 | 66.1 | 66.3 | 66.9 | 67.5 | 68.6 | | Sex | Female | 48.7 | 49.2 | 49.1 | 49.1 | 48.8 | 48.9 | | Sex | Male | 51.3 | 50.8 | 50.9 | 50.9 | 51.2 | 51.1 | | | Below Proficiency | 31.0 | 30.5 | 29.0 | 27.0 | 24.7 | 21.2 | | Performance | Approaching Proficiency | 23.2 | 24.1 | 24.0 | 25.6 | 26.2 | 28.7 | | Level | At Proficiency | 27.9 | 25.6 | 31.8 | 29.8 | 28.8 | 28.6 | | | Above Proficiency | 17.9 | 19.7 | 15.2 | 17.5 | 20.2 | 21.5 | | Mathematics | | | | | | | | | | Total N | 83,079 | 84,144 | 86,368 | 85,812 | 84,578 | 82,990 | | | Asian | 2.8 | 2.6 | 2.5 | 2.3 | 2.5 | 2.3 | | | Black | 12.6 | 12.5 | 12.6 | 12.2 | 12.0 | 11.7 | | Desc | Hispanic | 13.1 | 13.3 | 13.3 | 13.3 | 12.8 | 12.4 | | Race | Multiracial | 5.4 | 5.2 | 5.1 | 5.0 | 4.9 | 4.7 | | | Other | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | | | White | 65.9 | 66.1 | 66.3 | 66.9 | 67.5 | 68.6 | | Demographic Subgroup | | % Students by Grade | | | | | | |----------------------|-------------------------|--|--------|------|--------|------|------| | | | 3 | 4 | 5 | 6 | 7 | 8 | | Sex | Female | 48.7 | 49.2 | 49.1 | 49.1 | 48.8 | 48.9 | | Sex | Male | 51.3 | 50.8 | 50.9 | 50.9 | 51.2 | 51.1 | | | Below Proficiency | 23.2 | 25.8 | 27.3 | 30.3 | 31.9 | 34.8 | | Performance | Approaching Proficiency | 18.7 | 20.7 | 25.3 | 23.9 | 26.7 | 27.8 | | Level | At Proficiency | 32.6 | 32.8 | 25.3 | 25.6 | 22.9 | 19.1 | | | Above Proficiency | 25.5 | 20.6 | 22.1 | 20.2 | 18.4 | 18.3 | | Science | | | | | | | | | | Total N | ı | 84,064 | _ | 85,653 | = | | | | Asian | - | 2.6 | _ | 2.3 | = | - | | | Black | - | 12.5 | _ | 12.2 | _ | _ | | Race | Hispanic | _ | 13.3 | _ | 13.3 | _ | _ | | Race | Multiracial | - | 5.2 | _ | 5.0 | _ | _ | | | Other | _ | 0.2 | _ | 0.3 | _ | _ | | | White | Female 48.7 49.2 Male 51.3 50.8 ow Proficiency 23.2 25.8 ng Proficiency 18.7 20.7 At Proficiency 32.6 32.8 ve Proficiency 25.5 20.6 Total N — 84,064 Asian — 2.6 Black — 12.5 Hispanic — 13.3 Multiracial — 5.2 Other — 0.2 White — 66.1 Female — 49.2 Male — 50.8 ow Proficiency — 34.9 ng Proficiency — 19.3 | _ | 67.0 | _ | _ | | | Sex | Female | - | 49.2 | _ | 49.1 | _ | _ | | Sex | Male | - | 50.8 | _ | 50.9 | _ | _ | | | Below Proficiency | _ | 34.9 | _ | 26.5 | _ | _ | | Performance | Approaching Proficiency | _ | 19.3 | _ | 25.4 | _ | - | | Level | At Proficiency | _ | 21.7 | _ | 28.8 | _ | - | | | Above Proficiency | | 24.1 | _ | 19.3 | | _ | Table 3.3. Linking Study Sample Demographics (Weighted) | | | % | Student | s by Grad | de | | | |--------------------|-------------------------|--------|---------|-----------|--------|--------|--------| | Demog | 3 | 4 | 5 | 6 | 7 | 8 | | | ELA/Reading | | | | | | | | | | Total N | 40,699 | 41,109 | 41,928 | 41,224 | 40,209 | 38,868 | | | Asian | 2.8 | 2.6 | 2.5 | 2.3 | 2.5 | 2.3 | | | Black | 12.6 | 12.5 | 12.5 | 12.2 | 12.1 | 11.7 | | Race | Hispanic | 13.1 | 13.3 | 13.3 | 13.3 | 12.8 | 12.4 | | Race | Multiracial | 5.4 | 5.2 | 5.2 | 5.0 | 4.9 | 4.7 | | | Other | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | | | White | 65.9 | 66.1 | 66.3 | 66.9 | 67.5 | 68.6 | | Sov | Female | 48.7 | 49.2 | 49.1 | 49.1 | 48.8 | 48.9 | | Sex | Male | 51.3 | 50.8 | 50.9 | 50.9 | 51.2 | 51.1 | | | Below Proficiency | 31.0 | 30.5 | 29.0 | 27.0 | 24.7 | 21.2 | | Performance | Approaching Proficiency | 23.2 | 24.1 | 24.0 | 25.6 | 26.2 | 28.7 | | Level | At Proficiency | 27.9 | 25.6 | 31.8 | 29.8 | 28.8 | 28.6 | | | Above Proficiency | 17.9 | 19.7 | 15.2 | 17.5 | 20.2 | 21.5 | | | % Students by Grade | | | | | | | | |-------------|-------------------------|--------|--------|--------|---|--|--------|--| | Demog | 3 | 4 | 5 | 6 | 7 | 8 | | | | Mathematics | | | | | | | | | | | Total N | 40,103 | 40,457 | 41,410 | 40,638 | 40,047 | 38,438 | | | | Asian | 2.8 | 2.6 | 2.5 | 2.3 | 2.5 | 2.3 | | | | Black | 12.6 | 12.5 | 12.6 | 12.2 | 12.0 | 11.7 | | | Race | Hispanic | 13.1 | 13.3 | 13.3 | 13.3 | 12.8 | 12.4 | | | Nace | Multiracial | 5.4 | 5.2 | 5.1 | 5.0 | 4.9 | 4.7 | | | | Other | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | | | | White | 65.9 | 66.1 | 66.3 | 66.9 | 7 38 40,047 3.3 2.5 3.2 12.0 3.3 12.8 3.0 4.9 3.3 0.3 3.9 67.6 3.1 48.8 3.9 51.2 3.3 31.9 3.9 26.7 3.6 22.9 3.2 18.4 3.8 — 3.0 — 3.1 — 3.1 — 3.2 — 3.3 — 3.0 — 3.1 — 3.2 — 3.3 — 3.3 — 3.4 — 3.5 — 3.5 — 3.6 — 3.7 — 3.8 — 3.8 — 3.8 — | 68.6 | | | Sex | Female | 48.7 | 49.2 | 49.1 | 49.1 | 48.8 | 48.9 | | | Jex | Male | 51.3 | 50.8 | 50.9 | 50.9 | 51.2 | 51.1 | | | | Below Proficiency | 23.2 | 25.8 | 27.3 | 30.3 | 31.9 | 34.8 | | | Performance | Approaching Proficiency | 18.7 | 20.7 | 25.3 | 23.9 | 26.7 | 27.8 | | | Level | At Proficiency | 32.6 | 32.8 | 25.3 | 25.6 | 22.9 | 19.1 | | | | Above Proficiency | 25.5 | 20.6 | 22.1 | 20.2 | 18.4 | 18.3 | | | Science | | | | | | | | | | | Total N | _ | 1,112 | _ | 2,808 | _ | _ | | | | Asian | _ | 2.6 | _ | 2.3 | - | - | | | | Black | _ | 12.5 | _ | 12.2 | - | - | | | Race | Hispanic | _ | 13.3 | _ | 6 7 110 40,638 40,047 3 2.5 2.3 2.5 2.6 12.2 12.0 3.3 13.3 12.8 5.1 5.0 4.9 0.2 0.3 0.3 6.3 66.9 67.6 9.1 49.1 48.8 0.9 50.9 51.2 7.3 30.3 31.9 5.3 23.9 26.7 5.3 25.6 22.9 2.1 20.2 18.4 - 2,808 - - 2.3 - | _ | | | | Nacc | Multiracial | _ | 5.2 | _ | 5.0 | _ | _ | | | | Other | _ | 0.2 | _ | 0.3 | _ | _ | | | | White | _ | 66.1 | _ | 67.0 | _ | _ | | | Sex | Female | _ | 49.2 | _ | 49.1 | _ | _ | | | Jex | Male | _ | 50.8 | | 50.9 | _ | _ | | | | Below Proficiency | | 34.9 | _ | 26.5 | _ | -7 | | | Performance | Approaching Proficiency | _ | 19.3 | _ | 25.4 | _ | - | | | Level | At Proficiency | _ | 21.7 | _ | 28.8 | _ | _ | | | | Above Proficiency | _ | 24.1 | _ | 19.3 | _ | _ | | # 3.2. Descriptive Statistics Table 3.4 presents descriptive statistics of the MAP Growth and ILEARN test scores from Spring 2019, including the correlation coefficients (r) between them. The correlation coefficients between the scores range from 0.81 to 0.82 for ELA/reading, 0.89 to 0.91 for mathematics, and 0.79 to 0.82 for science. These values indicate a strong relationship among the scores, which is important validity evidence for the claim that MAP Growth scores are good predictors of performance on the ILEARN assessments. **Table 3.4. Descriptive Statistics of Test Scores** | Grade | N | r | | ILEA | RN | | | MAP G | rowth | | |---------|--------|------|--------|-------|------|------|-------|-------|-------|------| | Grade | 17 | • | Mean | SD | Min. | Max. | Mean | SD | Min. | Max. | | ELA/Re | ading | | | | | | | | | | | 3 | 40,699 | 0.82 | 5449.4 | 69.0
| 5087 | 5750 | 199.6 | 15.6 | 138 | 244 | | 4 | 41,109 | 0.82 | 5480.9 | 75.3 | 5090 | 5810 | 206.5 | 15.3 | 140 | 253 | | 5 | 41,928 | 0.82 | 5512.8 | 79.6 | 5110 | 5825 | 211.5 | 15.1 | 139 | 256 | | 6 | 41,224 | 0.81 | 5534.2 | 73.2 | 5130 | 5865 | 215.8 | 15.1 | 152 | 261 | | 7 | 40,209 | 0.81 | 5560.1 | 81.6 | 5130 | 5890 | 219.3 | 15.2 | 149 | 263 | | 8 | 38,868 | 0.81 | 5572.9 | 78.5 | 5150 | 5902 | 222.3 | 15.4 | 151 | 271 | | Mathen | natics | | | | | | | | | | | 3 | 40,103 | 0.89 | 6437.2 | 76.0 | 6104 | 6730 | 203.1 | 13.7 | 131 | 270 | | 4 | 40,457 | 0.90 | 6476.8 | 78.0 | 6100 | 6800 | 213.1 | 15.2 | 138 | 287 | | 5 | 41,410 | 0.91 | 6500.9 | 84.8 | 6110 | 6850 | 222.0 | 17.5 | 135 | 294 | | 6 | 40,638 | 0.90 | 6527.0 | 93.1 | 6110 | 6870 | 225.8 | 16.8 | 141 | 311 | | 7 | 40,047 | 0.90 | 6535.9 | 96.7 | 6120 | 6920 | 231.2 | 18.0 | 142 | 300 | | 8 | 38,438 | 0.89 | 6550.5 | 107.1 | 6120 | 6950 | 235.7 | 19.1 | 142 | 313 | | Science | 9 | | | | | | | | | | | 5 | 1,112 | 0.79 | 7501.5 | 43.8 | 7358 | 7650 | 201.9 | 11.1 | 161 | 236 | | 8 | 2,808 | 0.82 | 7500.8 | 51.1 | 7371 | 7650 | 210.0 | 11.2 | 171 | 244 | Note. SD = standard deviation; Min. = minimum; Max. = maximum. #### 3.3. MAP Growth Cut Scores Table 3.5 to Table 3.7 present the ILEARN scale score ranges and the corresponding MAP Growth RIT cut scores and percentile ranges by content area and grade. These tables can be used to predict a student's likely performance level on the ILEARN spring assessment when MAP Growth is taken in the fall, winter, or spring. For example, a grade 3 student who obtained a MAP Growth reading RIT score of 195 in the fall is likely to reach *At Proficiency* on the ILEARN ELA test. A grade 3 student who obtained a MAP Growth reading RIT score of 200 in the winter is also likely to reach *At Proficiency* on the ILEARN. The winter cut score is higher than the fall cut score because growth is expected between fall and winter as students receive more instruction during the school year. Within this report, the cut scores for fall and winter are derived from the spring cuts and the typical growth scores from fall-to-spring or winter-to-spring. The typical growth scores are based on the default instructional weeks most encountered for each term (Weeks 4, 20, and 32 for fall, winter, and spring, respectively). Since instructional weeks often vary by district, the cut scores in this report may differ slightly from the MAP Growth score reports that reflect instructional weeks set by partners. If the actual instructional weeks deviate from the default ones, a student's projected performance level could be different from the generic projection presented in this document. Partners are therefore encouraged to use the projected performance level in students' profile, classroom, and grade reports in the NWEA reporting system since they reflect the specific instructional weeks set by partners. Table 3.5. MAP Growth Cut Scores—ELA/Reading | | | | | ILEARN ELA | | | | | |--------|---------|-------------|------------|----------------|-----------------|----------------|---------|-------------| | Grade | Below P | Proficiency | Approachir | ng Proficiency | At Pro | ficiency | Above F | Proficiency | | 3 | 5060 |)–5415 | 5416 | 6–5459 | 5460 |) –5514 | 5518 | 5–5760 | | 4 | 5090 |)–5443 | 5444 | 1–5492 | 5493 | 3 –5546 | 5547 | 7–5810 | | 5 | 5110 |)–5471 | 5472 | 2–5523 | 5524 | 1 –5594 | 5598 | 5–5850 | | 6 | 5130 |)–5491 | 5492 | 2–5543 | 5544 | I –5603 | 5604 | 4–5870 | | 7 | 5130 |)–5506 | 5507 | 7–5567 | 5568 | 3 –5628 | 5629 | 9–5890 | | 8 | 5150 |)–5510 | 5511 | 1–5576 | 5577 | 7 –5637 | 5638 | 3–5920 | | | | | M | AP Growth Rea | ding | | | | | Grade | Below P | Proficiency | Approachir | ng Proficiency | At Pro | ficiency | Above F | Proficiency | | Orauc | RIT | Percentile | RIT | Percentile | RIT | Percentile | RIT | Percentile | | Fall | | | | | | | | | | 2 | 100–168 | 1–47 | 169–181 | 48–75 | 182 –197 | 76–94 | 198–350 | 95–99 | | 3 | 100–184 | 1–50 | 185–194 | 51–70 | 195 –207 | 71–89 | 208–350 | 90–99 | | 4 | 100–194 | 1–47 | 195–204 | 48–68 | 205 –214 | 69–85 | 215–350 | 86–99 | | 5 | 100–199 | 1–41 | 200–209 | 42–63 | 210 –223 | 64–87 | 224–350 | 88–99 | | 6 | 100–203 | 1–37 | 204–216 | 38–67 | 217 –227 | 68–86 | 228–350 | 87–99 | | 7 | 100–207 | 1–39 | 208–218 | 40–64 | 219 –229 | 65–84 | 230–350 | 85–99 | | 8 | 100–208 | 1–34 | 209–221 | 35–63 | 222 –232 | 64–83 | 233–350 | 84–99 | | Winter | | | | | | | | | | 2 | 100–175 | 1–47 | 176–187 | 48–74 | 188 –203 | 75–93 | 204–350 | 94–99 | | 3 | 100–189 | 1–49 | 190–199 | 50–70 | 200 –212 | 71–89 | 213–350 | 90–99 | | 4 | 100–197 | 1–46 | 198–207 | 47–67 | 208 –217 | 68–84 | 218–350 | 85–99 | | 5 | 100–201 | 1–39 | 202–212 | 40–64 | 213 –224 | 65–85 | 225–350 | 86–99 | | 6 | 100–205 | 1–38 | 206–217 | 39–66 | 218 –228 | 67–85 | 229–350 | 86–99 | | 7 | 100–208 | 1–38 | 209–219 | 39–63 | 220 –230 | 64–84 | 231–350 | 85–99 | | 8 | 100–209 | 1–33 | 210–222 | 34–63 | 223 –233 | 64–83 | 234–350 | 84–99 | | Spring | | | | | | | | | | 2 | 100–180 | 1–47 | 181–191 | 48–71 | 192 –205 | 72–91 | 206–350 | 92–99 | | 3 | 100–193 | 1–49 | 194–202 | 50–68 | 203 –213 | 69–86 | 214–350 | 87–99 | | 4 | 100–200 | 1–47 | 201–209 | 48–66 | 210 –218 | 67–82 | 219–350 | 83–99 | | 5 | 100–204 | 1–41 | 205–213 | 42–62 | 214 –225 | 63–84 | 226–350 | 85–99 | | 6 | 100–207 | 1–39 | 208–218 | 40–65 | 219 –229 | 66–85 | 230–350 | 86–99 | | 7 | 100–210 | 1–40 | 211–220 | 41–63 | 221 –231 | 64–83 | 232–350 | 84–99 | | 8 | 100–211 | 1–36 | 212–223 | 37–63 | 224 –234 | 64–83 | 235–350 | 84–99 | *Note*. Cut scores for fall and winter are derived from the spring cuts and growth scores based on the typical instructional weeks. Spring cut scores for grade 2 were derived from the grade 3 cuts using the 2025 MAP Growth conditional growth norms. Bold numbers indicate the cut scores considered to be at least proficient for accountability purposes. **Table 3.6. MAP Growth Cut Scores—Mathematics** | | | | ILI | EARN Mathema | ntics | | | | |--------|---------|-------------|------------|----------------|-----------------|----------------|------------------|-------------| | Grade | Below P | Proficiency | Approachin | ng Proficiency | At Pro | oficiency | Above F | Proficiency | | 3 | 6080 |)–6381 | 6382 | 2–6424 | 642 | 5 –6487 | 6488 | 3–6730 | | 4 | 6100 |)–6428 | 6429 | 9–6473 | 6474 | 1 –6540 | 654 ⁻ | 1–6800 | | 5 | 6110 |)–6452 | 6453 | 3–6509 | 6510 |) –6565 | 6566 | 6–6850 | | 6 | 6110 |)–6487 | 6488 | 3–6544 | 654 | 5 –6604 | 660 | 5–6870 | | 7 | 6120 |)–6492 | 6493 | 3–6561 | 6562 | 2 –6624 | 662 | 5–6920 | | 8 | 6120 | 0–6508 | 6509 | 9–6589 | 6590 |) –6650 | 665 ⁻ | 1–6950 | | | | | MAP | Growth Mathe | matics | | | | | Grade | Below P | Proficiency | Approachin | ng Proficiency | At Pro | oficiency | Above F | Proficiency | | Grade | RIT | Percentile | RIT | Percentile | RIT | Percentile | RIT | Percentile | | Fall | | | | | | | | | | 2 | 100–167 | 1–37 | 168–177 | 38–62 | 178 –191 | 63–88 | 192–350 | 89–99 | | 3 | 100–180 | 1–41 | 181–188 | 42–61 | 189 –199 | 62-84 | 200–350 | 85–99 | | 4 | 100–194 | 1–44 | 195–204 | 45–68 | 205 –218 | 69–91 | 219–350 | 92–99 | | 5 | 100–204 | 1–46 | 205–216 | 47–74 | 217 –228 | 75–91 | 229–350 | 92–99 | | 6 | 100–211 | 1–53 | 212–220 | 54–74 | 221 –232 | 75–91 | 233–350 | 92–99 | | 7 | 100–218 | 1–53 | 219–230 | 54–78 | 231 –243 | 79–93 | 244–350 | 94–99 | | 8 | 100–225 | 1–58 | 226–239 | 59–83 | 240 –249 | 84–93 | 250–350 | 94–99 | | Winter | | | | | | | | | | 2 | 100–175 | 1–36 | 176–185 | 37–61 | 186 –200 | 62–89 | 201–350 | 90–99 | | 3 | 100–188 | 1–40 | 189–197 | 41–62 | 198 –208 | 63–83 | 209–350 | 84–99 | | 4 | 100–201 | 1–43 | 202–212 | 44–68 | 213 –226 | 69–90 | 227–350 | 91–99 | | 5 | 100–210 | 1–47 | 211–222 | 48–73 | 223 –234 | 74–90 | 235–350 | 91–99 | | 6 | 100–217 | 1–54 | 218–227 | 55–75 | 228 –239 | 76–91 | 240–350 | 92–99 | | 7 | 100–222 | 1–53 | 223–235 | 54–78 | 236 –248 | 79–93 | 249–350 | 94–99 | | 8 | 100–229 | 1–57 | 230–244 | 58–83 | 245 –254 | 84–92 | 255–350 | 93–99 | | Spring | | | | | | | | | | 2 | 100–182 | 1–38 | 183–191 | 39–60 | 192 –204 | 61–85 | 205–350 | 86–99 | | 3 | 100–195 | 1–42 | 196–203 | 43–60 | 204 –214 | 61–81 | 215–350 | 82–99 | | 4 | 100–207 | 1–44 | 208–217 | 45–66 | 218 –231 | 67–88 | 232–350 | 89–99 | | 5 | 103–214 | 1–47 | 215–226 | 48–71 | 227 –238 | 72–88 | 239–350 | 89–99 | | 6 | 102–221 | 1–53 | 222–231 | 54–73 | 232 –243 | 74–89 | 244–350 | 90–99 | | 7 | 105–225 | 1–53 | 226–237 | 54–76 | 238 –250 | 77–91 | 251–350 | 92–99 | | 8 | 105–232 | 1–57 | 233–246 | 58–81 | 247 –256 | 82–91 | 257–350 | 92–99 | *Note*. Cut scores for fall and winter are derived from the spring cuts and growth scores based on the typical instructional weeks. Spring cut scores for grade 2 were derived from the grade 3 cuts using the 2025 MAP Growth conditional growth norms. Bold numbers indicate the cut scores considered to be at least proficient for accountability purposes. Table 3.7. MAP Growth Cut Scores—Science | | | | | ILEARN Science | :e | | | | |--------|---------|-------------|------------|----------------|-----------------|----------------|---------|-------------| | Grade | Below F | Proficiency | Approachir | ng Proficiency | At Pro | ficiency | Above F | Proficiency | | 4 | 7350 |)–7481 | 7482 | 2–7505 | 7506 | 6 –7534 | 7535 | 5–7650 | | 6 | 7350 |)–7465 | 7466 | 6–7503 | 7504 | 1 –7544 | 7545 | 5–7650 | | | | | M | AP Growth Scie | ence | | | | | Grade | Below F | Proficiency | Approachin | ng Proficiency | At Pro |
ficiency | Above F | Proficiency | | Orace | RIT | Percentile | RIT | Percentile | RIT | Percentile | RIT | Percentile | | Fall | | | | | | | | | | 4 | 100–191 | 1–40 | 192–198 | 41–62 | 199 –206 | 63–82 | 207–350 | 83–99 | | 6 | 100–198 | 1–34 | 199–208 | 35–64 | 209 –217 | 65–85 | 218–350 | 86–99 | | Winter | | | | | | | | | | 4 | 100–194 | 1–40 | 195–201 | 41–61 | 202 –209 | 62–81 | 210–350 | 82–99 | | 6 | 100–200 | 1–35 | 201–210 | 36–64 | 211 –218 | 65–83 | 219–350 | 84–99 | | Spring | | | | | | | | | | 4 | 100–197 | 1–42 | 198–203 | 43–60 | 204 –210 | 61–78 | 211–350 | 79–99 | | 6 | 100–202 | 1–37 | 203–211 | 38–63 | 212 –219 | 64–82 | 220–350 | 83–99 | *Note*. Cut scores for fall and winter are derived from the spring cuts and growth scores based on the typical instructional weeks. Spring cut scores for grade 2 were derived from the grade 3 cuts using the 2025 MAP Growth conditional growth norms. Bold numbers indicate the cut scores considered to be at least proficient for accountability purposes. ## 3.4. Classification Accuracy Table 3.8 presents the classification accuracy summary statistics, including the overall classification accuracy rates. These results indicate how well MAP Growth spring RIT scores predict proficiency on the ILEARN tests, providing insight into the predictive validity of MAP Growth. The overall classification accuracy rates range from 0.82 to 0.83 for ELA/reading, 0.87 to 0.89 for mathematics, and 0.80 to 0.84 for science. These values suggest that the RIT cut scores are good at classifying students as proficient or not proficient on the ILEARN assessment. Although the results show that MAP Growth scores can be used to accurately classify students as likely to be proficient on the ILEARN tests, there is a notable limitation to how these results should be used and interpreted. ILEARN and MAP Growth assessments are designed for different purposes and measure slightly different constructs even within the same content area. Therefore, scores on the two tests cannot be assumed to be interchangeable. MAP Growth may not be used as a substitute for the state tests and vice versa. **Table 3.8. Classification Accuracy Results** | Grade | N | Cut Sco | ore | Class. | Ra | ate | Sensitivity | Specificity | Precision | AUC | |---------|--------|------------|--------|----------|------|------|-------------|-------------|-----------|------| | Grade | 14 | MAP Growth | ILEARN | Accuracy | FP | FN | Sensitivity | Specificity | FIECISION | AUC | | ELA/Re | ading | | | | | | | | | | | 3 | 40,699 | 203 | 5460 | 0.83 | 0.17 | 0.16 | 0.84 | 0.83 | 0.81 | 0.92 | | 4 | 41,109 | 210 | 5493 | 0.83 | 0.17 | 0.17 | 0.83 | 0.83 | 0.80 | 0.92 | | 5 | 41,928 | 214 | 5524 | 0.82 | 0.19 | 0.15 | 0.85 | 0.81 | 0.79 | 0.91 | | 6 | 41,224 | 219 | 5544 | 0.83 | 0.16 | 0.18 | 0.82 | 0.84 | 0.82 | 0.91 | | 7 | 40,209 | 221 | 5568 | 0.82 | 0.20 | 0.16 | 0.84 | 0.80 | 0.80 | 0.91 | | 8 | 38,868 | 224 | 5577 | 0.82 | 0.19 | 0.17 | 0.83 | 0.81 | 0.81 | 0.91 | | Mathem | natics | | | | | | | | | | | 3 | 40,103 | 202 | 6425 | 0.88 | 0.17 | 0.09 | 0.91 | 0.83 | 0.88 | 0.95 | | 4 | 40,457 | 213 | 6474 | 0.87 | 0.15 | 0.11 | 0.89 | 0.85 | 0.87 | 0.95 | | 5 | 41,410 | 224 | 6510 | 0.88 | 0.12 | 0.12 | 0.88 | 0.88 | 0.87 | 0.96 | | 6 | 40,638 | 229 | 6545 | 0.87 | 0.13 | 0.13 | 0.87 | 0.87 | 0.85 | 0.95 | | 7 | 40,047 | 236 | 6562 | 0.89 | 0.11 | 0.11 | 0.89 | 0.89 | 0.85 | 0.96 | | 8 | 38,438 | 243 | 6590 | 0.88 | 0.10 | 0.15 | 0.85 | 0.90 | 0.84 | 0.96 | | Science | 9 | | | | | | | | | | | 4 | 1,112 | 204 | 7506 | 0.80 | 0.18 | 0.23 | 0.77 | 0.82 | 0.78 | 0.89 | | 6 | 2,808 | 212 | 7504 | 0.84 | 0.13 | 0.19 | 0.81 | 0.87 | 0.85 | 0.92 | Note. Class. Accuracy = overall classification accuracy rate; FP = false positives; FN = false negatives; AUC = area under the ROC curve. # 3.5. Proficiency Projections Table 3.9 to Table 3.11 present the estimated probability of achieving *At Proficiency* performance on the ILEARN test based on RIT scores from fall, winter, or spring. For example, a grade 3 student who obtained a MAP Growth reading score of 200 in the fall has a 67% chance of reaching *At Proficiency* or higher on the ILEARN test. "Prob." indicates the probability of obtaining proficient status on the ILEARN test in the spring. Table 3.9. Proficiency Projection Based on RIT Scores—ELA/Reading | | 044 | 0 | | Fall | | | Winter | | | Spring | | |-------|---------------------|---------------|------|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------| | Grade | Start
Percentile | Spring
Cut | Fall | Projected Profi | ciency | Winter | Projected Profi | ciency | Spring | Projected Profi | ciency | | | i ercentile | Out | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | 5 | 192 | 142 | No | <0.01 | 149 | No | <0.01 | 153 | No | <0.01 | | | 10 | 192 | 148 | No | <0.01 | 155 | No | <0.01 | 159 | No | <0.01 | | | 15 | 192 | 152 | No | <0.01 | 159 | No | <0.01 | 164 | No | <0.01 | | | 20 | 192 | 156 | No | 0.01 | 162 | No | <0.01 | 167 | No | <0.01 | | | 25 | 192 | 159 | No | 0.01 | 165 | No | 0.01 | 170 | No | <0.01 | | | 30 | 192 | 161 | No | 0.02 | 168 | No | 0.02 | 173 | No | <0.01 | | | 35 | 192 | 163 | No | 0.04 | 170 | No | 0.03 | 175 | No | <0.01 | | | 40 | 192 | 166 | No | 0.06 | 172 | No | 0.05 | 177 | No | <0.01 | | | 45 | 192 | 168 | No | 0.09 | 175 | No | 0.07 | 180 | No | <0.01 | | 2 | 50 | 192 | 170 | No | 0.13 | 177 | No | 0.11 | 182 | No | <0.01 | | | 55 | 192 | 172 | No | 0.16 | 179 | No | 0.17 | 184 | No | 0.01 | | | 60 | 192 | 174 | No | 0.22 | 181 | No | 0.2 | 186 | No | 0.04 | | | 65 | 192 | 177 | No | 0.33 | 183 | No | 0.27 | 188 | No | 0.13 | | | 70 | 192 | 179 | No | 0.37 | 186 | No | 0.41 | 191 | No | 0.39 | | | 75 | 192 | 182 | Yes | 0.5 | 188 | Yes | 0.5 | 193 | Yes | 0.61 | | | 80 | 192 | 184 | Yes | 0.59 | 191 | Yes | 0.59 | 196 | Yes | 0.87 | | | 85 | 192 | 188 | Yes | 0.71 | 194 | Yes | 0.73 | 200 | Yes | 0.99 | | | 90 | 192 | 192 | Yes | 0.84 | 199 | Yes | 0.86 | 204 | Yes | >0.99 | | | 95 | 192 | 198 | Yes | 0.94 | 205 | Yes | 0.96 | 210 | Yes | >0.99 | | | 5 | 203 | 155 | No | <0.01 | 160 | No | <0.01 | 164 | No | <0.01 | | | 10 | 203 | 161 | No | <0.01 | 167 | No | <0.01 | 171 | No | <0.01 | | | 15 | 203 | 166 | No | <0.01 | 171 | No | <0.01 | 175 | No | <0.01 | | 3 | 20 | 203 | 169 | No | <0.01 | 175 | No | <0.01 | 179 | No | <0.01 | | 3 | 25 | 203 | 172 | No | 0.01 | 178 | No | 0.01 | 182 | No | <0.01 | | | 30 | 203 | 175 | No | 0.02 | 180 | No | 0.02 | 184 | No | <0.01 | | | 35 | 203 | 178 | No | 0.05 | 183 | No | 0.04 | 187 | No | <0.01 | | | 40 | 203 | 180 | No | 0.07 | 185 | No | 0.05 | 189 | No | <0.01 | | | 011 | 0 | | Fall | | | Winter | | | Spring | | |-------|------------------|---------------|------|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------| | Grade | Start Percentile | Spring
Cut | Fall | Projected Profi | ciency | Winter | Projected Profi | ciency | Spring | Projected Profi | ciency | | | 1 Crocitiic | Out | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | 45 | 203 | 182 | No | 0.09 | 188 | No | 0.09 | 192 | No | <0.01 | | | 50 | 203 | 185 | No | 0.16 | 190 | No | 0.14 | 194 | No | 0.01 | | | 55 | 203 | 187 | No | 0.22 | 192 | No | 0.2 | 196 | No | 0.02 | | | 60 | 203 | 189 | No | 0.29 | 194 | No | 0.24 | 198 | No | 0.08 | | | 65 | 203 | 192 | No | 0.37 | 197 | No | 0.36 | 201 | No | 0.28 | | | 70 | 203 | 194 | No | 0.46 | 199 | No | 0.45 | 203 | Yes | 0.5 | | | 75 | 203 | 197 | Yes | 0.54 | 202 | Yes | 0.59 | 206 | Yes | 0.8 | | | 80 | 203 | 200 | Yes | 0.67 | 205 | Yes | 0.68 | 209 | Yes | 0.96 | | | 85 | 203 | 204 | Yes | 0.78 | 209 | Yes | 0.83 | 213 | Yes | >0.99 | | | 90 | 203 | 208 | Yes | 0.89 | 213 | Yes | 0.91 | 217 | Yes | >0.99 | | | 95 | 203 | 215 | Yes | 0.97 | 220 | Yes | 0.98 | 224 | Yes | >0.99 | | | 5 | 210 | 166 | No | <0.01 | 170 | No | <0.01 | 173 | No | <0.01 | | | 10 | 210 | 173 | No | <0.01 | 177 | No | <0.01 | 179 | No | <0.01 | | | 15 | 210 | 177 | No | <0.01 | 181 | No | <0.01 | 184 | No | <0.01 | | | 20 | 210 | 181 | No | 0.01 | 184 | No | <0.01 | 187 | No | <0.01 | | | 25 | 210 | 184 | No | 0.02 | 187 | No | 0.01 | 190 | No | <0.01 | | | 30 | 210 | 186 | No | 0.02 | 190 | No | 0.02 | 193 | No | <0.01 | | | 35 | 210 | 189 | No | 0.05 | 193 | No | 0.04 | 195 | No | <0.01 | | | 40 | 210 | 191 | No | 0.08 | 195 | No | 0.07 | 198 | No | <0.01 | | 4 | 45 | 210 | 194 | No | 0.12 | 197 | No | 0.1 | 200 | No | <0.01 | | | 50 | 210 | 196 | No | 0.17 | 199 | No | 0.16 | 202 | No | 0.01 | | | 55 | 210 | 198 | No | 0.24 | 202 | No | 0.23 | 204 | No | 0.04 | | | 60 | 210 | 200 | No | 0.32 | 204 | No | 0.31 | 207 | No | 0.2 | | | 65 | 210 | 203 | No | 0.41 | 206 | No | 0.4 | 209 | No | 0.39 | | | 70 | 210 | 205 | Yes | 0.5 | 209 | Yes | 0.55 | 211 | Yes | 0.61 | | | 75 | 210 | 208 | Yes | 0.64 | 211 | Yes | 0.6 | 214 | Yes | 0.87 | | | 80 | 210 | 211 | Yes | 0.72 | 214 | Yes | 0.73 | 217 | Yes | 0.98 | | | 85 | 210 | 215 | Yes | 0.86 | 218 | Yes | 0.87 | 220 | Yes | >0.99 | | | Otant | 0 | | Fall | | | Winter | | | Spring | | |-------|------------------|---------------|------|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------| | Grade | Start Percentile | Spring
Cut | Fall | Projected Profi | ciency | Winter | Projected Profi | ciency | Spring | Projected Profi | ciency | | | 1 Cr Contine | Out | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | 90 | 210 | 219 | Yes | 0.92 | 222 | Yes | 0.95 | 225 | Yes | >0.99 | | | 95 | 210 | 226 | Yes | 0.98 | 229 | Yes | 0.99 | 231 | Yes | >0.99 | | | 5 | 214 | 175 | No | <0.01 | 178 | No | <0.01 | 180 | No | <0.01 | | | 10 | 214 | 181 | No | <0.01 | 184 | No | <0.01 | 186 | No | <0.01 | | |
15 | 214 | 186 | No | 0.01 | 189 | No | <0.01 | 191 | No | <0.01 | | | 20 | 214 | 189 | No | 0.01 | 192 | No | 0.01 | 194 | No | <0.01 | | | 25 | 214 | 192 | No | 0.03 | 195 | No | 0.02 | 197 | No | <0.01 | | | 30 | 214 | 195 | No | 0.06 | 197 | No | 0.04 | 199 | No | <0.01 | | | 35 | 214 | 197 | No | 0.09 | 200 | No | 0.08 | 202 | No | <0.01 | | | 40 | 214 | 199 | No | 0.11 | 202 | No | 0.12 | 204 | No | <0.01 | | | 45 | 214 | 201 | No | 0.16 | 204 | No | 0.15 | 206 | No | 0.01 | | 5 | 50 | 214 | 204 | No | 0.27 | 206 | No | 0.22 | 208 | No | 0.04 | | | 55 | 214 | 206 | No | 0.31 | 209 | No | 0.35 | 211 | No | 0.2 | | | 60 | 214 | 208 | No | 0.4 | 211 | No | 0.4 | 213 | No | 0.39 | | | 65 | 214 | 210 | Yes | 0.5 | 213 | Yes | 0.5 | 215 | Yes | 0.61 | | | 70 | 214 | 213 | Yes | 0.6 | 215 | Yes | 0.6 | 217 | Yes | 8.0 | | | 75 | 214 | 215 | Yes | 0.69 | 218 | Yes | 0.74 | 220 | Yes | 0.96 | | | 80 | 214 | 218 | Yes | 8.0 | 221 | Yes | 0.85 | 223 | Yes | 0.99 | | | 85 | 214 | 222 | Yes | 0.89 | 224 | Yes | 0.92 | 226 | Yes | >0.99 | | | 90 | 214 | 226 | Yes | 0.96 | 228 | Yes | 0.97 | 230 | Yes | >0.99 | | | 95 | 214 | 232 | Yes | 0.99 | 235 | Yes | >0.99 | 237 | Yes | >0.99 | | | 5 | 219 | 181 | No | <0.01 | 183 | No | <0.01 | 185 | No | <0.01 | | | 10 | 219 | 187 | No | <0.01 | 189 | No | <0.01 | 191 | No | <0.01 | | | 15 | 219 | 191 | No | <0.01 | 193 | No | <0.01 | 195 | No | <0.01 | | 6 | 20 | 219 | 195 | No | 0.01 | 197 | No | 0.01 | 198 | No | <0.01 | | | 25 | 219 | 198 | No | 0.03 | 199 | No | 0.02 | 201 | No | <0.01 | | | 30 | 219 | 200 | No | 0.03 | 202 | No | 0.03 | 203 | No | <0.01 | | | 35 | 219 | 202 | No | 0.06 | 204 | No | 0.05 | 206 | No | <0.01 | | | 011 | 0 | | Fall | | | Winter | | | Spring | | |-------|------------------|---------------|------|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------| | Grade | Start Percentile | Spring
Cut | Fall | Projected Profi | ciency | Winter | Projected Profi | ciency | Spring | Projected Profi | ciency | | | 1 Crocitiic | Out | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | 40 | 219 | 205 | No | 0.11 | 206 | No | 0.08 | 208 | No | <0.01 | | | 45 | 219 | 207 | No | 0.14 | 209 | No | 0.16 | 210 | No | 0.01 | | | 50 | 219 | 209 | No | 0.2 | 211 | No | 0.19 | 212 | No | 0.02 | | | 55 | 219 | 211 | No | 0.27 | 213 | No | 0.26 | 214 | No | 0.08 | | | 60 | 219 | 213 | No | 0.36 | 215 | No | 0.35 | 216 | No | 0.2 | | | 65 | 219 | 215 | No | 0.4 | 217 | No | 0.45 | 218 | No | 0.39 | | | 70 | 219 | 218 | Yes | 0.55 | 219 | Yes | 0.55 | 221 | Yes | 0.72 | | | 75 | 219 | 220 | Yes | 0.64 | 222 | Yes | 0.69 | 223 | Yes | 0.87 | | | 80 | 219 | 223 | Yes | 0.77 | 225 | Yes | 0.81 | 226 | Yes | 0.98 | | | 85 | 219 | 226 | Yes | 0.86 | 228 | Yes | 0.9 | 229 | Yes | >0.99 | | | 90 | 219 | 231 | Yes | 0.96 | 232 | Yes | 0.96 | 233 | Yes | >0.99 | | | 95 | 219 | 237 | Yes | 0.99 | 238 | Yes | 0.99 | 239 | Yes | >0.99 | | | 5 | 221 | 185 | No | <0.01 | 186 | No | <0.01 | 187 | No | <0.01 | | | 10 | 221 | 191 | No | <0.01 | 192 | No | <0.01 | 193 | No | <0.01 | | | 15 | 221 | 195 | No | 0.01 | 196 | No | <0.01 | 197 | No | <0.01 | | | 20 | 221 | 198 | No | 0.01 | 200 | No | 0.01 | 201 | No | <0.01 | | | 25 | 221 | 201 | No | 0.03 | 202 | No | 0.02 | 203 | No | <0.01 | | | 30 | 221 | 204 | No | 0.06 | 205 | No | 0.04 | 206 | No | <0.01 | | | 35 | 221 | 206 | No | 0.08 | 207 | No | 0.07 | 208 | No | <0.01 | | 7 | 40 | 221 | 208 | No | 0.12 | 210 | No | 0.14 | 211 | No | <0.01 | | / | 45 | 221 | 210 | No | 0.18 | 212 | No | 0.16 | 213 | No | 0.01 | | | 50 | 221 | 212 | No | 0.24 | 214 | No | 0.23 | 215 | No | 0.04 | | | 55 | 221 | 214 | No | 0.28 | 216 | No | 0.31 | 217 | No | 0.13 | | | 60 | 221 | 217 | No | 0.41 | 218 | No | 0.4 | 219 | No | 0.28 | | | 65 | 221 | 219 | Yes | 0.5 | 220 | Yes | 0.5 | 221 | Yes | 0.5 | | | 70 | 221 | 221 | Yes | 0.59 | 223 | Yes | 0.64 | 224 | Yes | 8.0 | | | 75 | 221 | 224 | Yes | 0.72 | 225 | Yes | 0.73 | 226 | Yes | 0.92 | | | 80 | 221 | 226 | Yes | 0.79 | 228 | Yes | 0.84 | 229 | Yes | 0.99 | | | | | | Fall | | | Winter | | | Spring | | |-------|---------------------|---------------|------|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------| | Grade | Start
Percentile | Spring
Cut | Fall | Projected Profi | ciency | Winter | Projected Profi | ciency | Spring | Projected Profi | ciency | | | i el cellule | Out | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | 85 | 221 | 230 | Yes | 0.9 | 231 | Yes | 0.91 | 232 | Yes | >0.99 | | | 90 | 221 | 234 | Yes | 0.96 | 235 | Yes | 0.97 | 237 | Yes | >0.99 | | | 95 | 221 | 240 | Yes | 0.99 | 241 | Yes | 0.99 | 243 | Yes | >0.99 | | | 5 | 224 | 188 | No | <0.01 | 189 | No | <0.01 | 190 | No | <0.01 | | | 10 | 224 | 194 | No | <0.01 | 195 | No | <0.01 | 196 | No | <0.01 | | | 15 | 224 | 198 | No | 0.01 | 199 | No | <0.01 | 200 | No | <0.01 | | | 20 | 224 | 201 | No | 0.02 | 203 | No | 0.02 | 203 | No | <0.01 | | | 25 | 224 | 204 | No | 0.04 | 205 | No | 0.02 | 206 | No | <0.01 | | | 30 | 224 | 207 | No | 0.06 | 208 | No | 0.05 | 209 | No | <0.01 | | | 35 | 224 | 209 | No | 0.09 | 210 | No | 0.08 | 211 | No | <0.01 | | | 40 | 224 | 211 | No | 0.13 | 213 | No | 0.12 | 213 | No | <0.01 | | | 45 | 224 | 214 | No | 0.18 | 215 | No | 0.17 | 216 | No | 0.01 | | 8 | 50 | 224 | 216 | No | 0.25 | 217 | No | 0.24 | 218 | No | 0.04 | | | 55 | 224 | 218 | No | 0.33 | 219 | No | 0.32 | 220 | No | 0.13 | | | 60 | 224 | 220 | No | 0.41 | 221 | No | 0.41 | 222 | No | 0.28 | | | 65 | 224 | 222 | Yes | 0.5 | 223 | Yes | 0.5 | 224 | Yes | 0.5 | | | 70 | 224 | 225 | Yes | 0.63 | 226 | Yes | 0.64 | 227 | Yes | 0.8 | | | 75 | 224 | 227 | Yes | 0.71 | 228 | Yes | 0.72 | 229 | Yes | 0.92 | | | 80 | 224 | 230 | Yes | 0.82 | 231 | Yes | 0.83 | 232 | Yes | 0.99 | | | 85 | 224 | 233 | Yes | 0.89 | 235 | Yes | 0.92 | 236 | Yes | >0.99 | | | 90 | 224 | 238 | Yes | 0.96 | 239 | Yes | 0.97 | 240 | Yes | >0.99 | | | 95 | 224 | 244 | Yes | 0.99 | 245 | Yes | >0.99 | 246 | Yes | >0.99 | Table 3.10. Proficiency Projection Based on RIT Scores—Mathematics | | 011 | 0 | | Fall | | | Winter | | | Spring | | |-------|------------------|---------------|------|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------| | Grade | Start Percentile | Spring
Cut | Fall | Projected Profi | ciency | Winter | Projected Profi | ciency | Spring | Projected Profi | ciency | | | i ercentile | Out | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | 5 | 192 | 147 | No | <0.01 | 155 | No | <0.01 | 161 | No | <0.01 | | | 10 | 192 | 153 | No | <0.01 | 161 | No | <0.01 | 167 | No | <0.01 | | | 15 | 192 | 157 | No | 0.01 | 165 | No | 0.01 | 171 | No | <0.01 | | | 20 | 192 | 160 | No | 0.03 | 168 | No | 0.02 | 174 | No | <0.01 | | | 25 | 192 | 162 | No | 0.04 | 171 | No | 0.03 | 177 | No | <0.01 | | | 30 | 192 | 165 | No | 0.07 | 173 | No | 0.06 | 179 | No | <0.01 | | | 35 | 192 | 167 | No | 0.11 | 175 | No | 0.09 | 181 | No | <0.01 | | | 40 | 192 | 169 | No | 0.16 | 177 | No | 0.14 | 183 | No | 0.01 | | | 45 | 192 | 171 | No | 0.23 | 179 | No | 0.18 | 185 | No | 0.02 | | 2 | 50 | 192 | 173 | No | 0.31 | 181 | No | 0.25 | 187 | No | 0.08 | | | 55 | 192 | 175 | No | 0.36 | 183 | No | 0.35 | 189 | No | 0.2 | | | 60 | 192 | 177 | No | 0.45 | 185 | No | 0.45 | 192 | Yes | 0.5 | | | 65 | 192 | 179 | Yes | 0.55 | 187 | Yes | 0.55 | 194 | Yes | 0.72 | | | 70 | 192 | 181 | Yes | 0.64 | 189 | Yes | 0.6 | 196 | Yes | 0.87 | | | 75 | 192 | 183 | Yes | 0.73 | 192 | Yes | 0.75 | 198 | Yes | 0.96 | | | 80 | 192 | 186 | Yes | 8.0 | 194 | Yes | 0.82 | 201 | Yes | 0.99 | | | 85 | 192 | 189 | Yes | 0.89 | 197 | Yes | 0.91 | 204 | Yes | >0.99 | | | 90 | 192 | 193 | Yes | 0.94 | 201 | Yes | 0.96 | 208 | Yes | >0.99 | | | 95 | 192 | 198 | Yes | 0.99 | 207 | Yes | 0.99 | 214 | Yes | >0.99 | | | 5 | 204 | 158 | No | <0.01 | 166 | No | <0.01 | 171 | No | <0.01 | | | 10 | 204 | 164 | No | <0.01 | 172 | No | <0.01 | 177 | No | <0.01 | | | 15 | 204 | 168 | No | <0.01 | 176 | No | <0.01 | 181 | No | <0.01 | | 3 | 20 | 204 | 171 | No | 0.01 | 179 | No | 0.01 | 185 | No | <0.01 | | 3 | 25 | 204 | 174 | No | 0.03 | 182 | No | 0.02 | 188 | No | <0.01 | | | 30 | 204 | 176 | No | 0.05 | 184 | No | 0.04 | 190 | No | <0.01 | | | 35 | 204 | 178 | No | 0.08 | 186 | No | 0.06 | 193 | No | <0.01 | | | 40 | 204 | 180 | No | 0.13 | 189 | No | 0.13 | 195 | No | 0.01 | | | 011 | 0 | | Fall | | | Winter | | | Spring | | |-------|------------------|---------------|------|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------| | Grade | Start Percentile | Spring
Cut | Fall | Projected Profi | ciency | Winter | Projected Profi | ciency | Spring | Projected Profi | ciency | | | 1 Cr Contine | Out | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | 45 | 204 | 182 | No | 0.19 | 191 | No | 0.2 | 197 | No | 0.02 | | | 50 | 204 | 184 | No | 0.26 | 193 | No | 0.24 | 199 | No | 0.08 | | | 55 | 204 | 186 | No | 0.35 | 195 | No | 0.34 | 201 | No | 0.2 | | | 60 | 204 | 188 | No | 0.45 | 197 | No | 0.45 | 203 | No | 0.39 | | | 65 | 204 | 190 | Yes | 0.55 | 199 | Yes | 0.55 | 206 | Yes | 0.72 | | | 70 | 204 | 192 | Yes | 0.65 | 201 | Yes | 0.66 | 208 | Yes | 0.87 | | | 75 | 204 | 195 | Yes | 0.78 | 204 | Yes | 8.0 | 211 | Yes | 0.98 | | | 80 | 204 | 197 | Yes | 0.85 | 206 | Yes | 0.87 | 213 | Yes | 0.99 | | | 85 | 204 | 200 | Yes | 0.92 | 210 | Yes | 0.94 | 217 | Yes | >0.99 | | | 90 | 204 | 204 | Yes | 0.97 | 214 | Yes | 0.98 | 221 | Yes | >0.99 | | | 95 | 204 | 210 | Yes | 0.99 | 220 | Yes | >0.99 | 227 | Yes | >0.99 | | | 5 | 218 | 171 | No | <0.01 | 176 | No | <0.01 | 180 | No | <0.01 | | | 10 | 218 | 177 | No | <0.01 | 183 | No | <0.01 | 187 |
No | <0.01 | | | 15 | 218 | 181 | No | <0.01 | 187 | No | <0.01 | 191 | No | <0.01 | | | 20 | 218 | 184 | No | <0.01 | 190 | No | <0.01 | 195 | No | <0.01 | | | 25 | 218 | 186 | No | 0.01 | 193 | No | <0.01 | 198 | No | <0.01 | | | 30 | 218 | 189 | No | 0.02 | 196 | No | 0.01 | 201 | No | <0.01 | | | 35 | 218 | 191 | No | 0.04 | 198 | No | 0.02 | 203 | No | <0.01 | | | 40 | 218 | 193 | No | 0.07 | 200 | No | 0.04 | 206 | No | <0.01 | | 4 | 45 | 218 | 195 | No | 0.11 | 202 | No | 0.08 | 208 | No | <0.01 | | | 50 | 218 | 197 | No | 0.16 | 204 | No | 0.13 | 210 | No | 0.01 | | | 55 | 218 | 199 | No | 0.23 | 207 | No | 0.24 | 212 | No | 0.04 | | | 60 | 218 | 201 | No | 0.31 | 209 | No | 0.28 | 215 | No | 0.2 | | | 65 | 218 | 203 | No | 0.4 | 211 | No | 0.39 | 217 | No | 0.39 | | | 70 | 218 | 205 | Yes | 0.5 | 213 | Yes | 0.5 | 220 | Yes | 0.72 | | | 75 | 218 | 208 | Yes | 0.65 | 216 | Yes | 0.67 | 222 | Yes | 0.87 | | | 80 | 218 | 210 | Yes | 0.73 | 219 | Yes | 8.0 | 225 | Yes | 0.98 | | | 85 | 218 | 214 | Yes | 0.87 | 222 | Yes | 0.9 | 229 | Yes | >0.99 | | | Otant | 0 | | Fall | | | Winter | | Spring | | | | |-------|------------------|---------------|------|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------|--| | Grade | Start Percentile | Spring
Cut | Fall | Projected Profi | ciency | Winter | Projected Profi | ciency | Spring | Projected Profi | ciency | | | | 1 Cr Contine | | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | | 90 | 218 | 217 | Yes | 0.93 | 226 | Yes | 0.97 | 233 | Yes | >0.99 | | | | 95 | 218 | 223 | Yes | 0.99 | 232 | Yes | >0.99 | 240 | Yes | >0.99 | | | | 5 | 227 | 180 | No | <0.01 | 183 | No | <0.01 | 186 | No | <0.01 | | | | 10 | 227 | 185 | No | <0.01 | 189 | No | <0.01 | 192 | No | <0.01 | | | | 15 | 227 | 189 | No | <0.01 | 194 | No | <0.01 | 197 | No | <0.01 | | | | 20 | 227 | 193 | No | <0.01 | 197 | No | <0.01 | 200 | No | <0.01 | | | | 25 | 227 | 195 | No | <0.01 | 200 | No | <0.01 | 204 | No | <0.01 | | | | 30 | 227 | 198 | No | 0.01 | 203 | No | <0.01 | 206 | No | <0.01 | | | | 35 | 227 | 200 | No | 0.01 | 205 | No | 0.01 | 209 | No | <0.01 | | | | 40 | 227 | 202 | No | 0.03 | 207 | No | 0.01 | 211 | No | <0.01 | | | | 45 | 227 | 204 | No | 0.05 | 210 | No | 0.03 | 214 | No | <0.01 | | | 5 | 50 | 227 | 206 | No | 0.08 | 212 | No | 0.06 | 216 | No | <0.01 | | | | 55 | 227 | 208 | No | 0.12 | 214 | No | 0.1 | 218 | No | 0.01 | | | | 60 | 227 | 210 | No | 0.19 | 216 | No | 0.16 | 221 | No | 0.04 | | | | 65 | 227 | 212 | No | 0.26 | 219 | No | 0.28 | 223 | No | 0.13 | | | | 70 | 227 | 215 | No | 0.4 | 221 | No | 0.39 | 226 | No | 0.39 | | | | 75 | 227 | 217 | Yes | 0.5 | 224 | Yes | 0.56 | 228 | Yes | 0.61 | | | | 80 | 227 | 220 | Yes | 0.65 | 226 | Yes | 0.67 | 232 | Yes | 0.92 | | | | 85 | 227 | 223 | Yes | 0.78 | 230 | Yes | 0.84 | 235 | Yes | 0.99 | | | | 90 | 227 | 227 | Yes | 0.9 | 234 | Yes | 0.94 | 240 | Yes | >0.99 | | | | 95 | 227 | 233 | Yes | 0.99 | 240 | Yes | 0.99 | 246 | Yes | >0.99 | | | | 5 | 232 | 184 | No | <0.01 | 187 | No | <0.01 | 190 | No | <0.01 | | | | 10 | 232 | 190 | No | <0.01 | 194 | No | <0.01 | 197 | No | <0.01 | | | | 15 | 232 | 194 | No | <0.01 | 198 | No | <0.01 | 201 | No | <0.01 | | | 6 | 20 | 232 | 197 | No | <0.01 | 201 | No | <0.01 | 205 | No | <0.01 | | | | 25 | 232 | 199 | No | <0.01 | 204 | No | <0.01 | 208 | No | <0.01 | | | | 30 | 232 | 202 | No | 0.01 | 207 | No | <0.01 | 211 | No | <0.01 | | | | 35 | 232 | 204 | No | 0.01 | 209 | No | <0.01 | 213 | No | <0.01 | | | | 011 | 0 | | Fall | | | Winter | | | Spring | | |-------|------------------|---------------|------|-----------------|--------|--------|-----------------|--------|--------|-----------------|--------| | Grade | Start Percentile | Spring
Cut | Fall | Projected Profi | ciency | Winter | Projected Profi | ciency | Spring | Projected Profi | ciency | | | 1 Groentile | Cut | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | 40 | 232 | 206 | No | 0.02 | 212 | No | 0.01 | 216 | No | <0.01 | | | 45 | 232 | 208 | No | 0.04 | 214 | No | 0.03 | 218 | No | <0.01 | | | 50 | 232 | 210 | No | 0.07 | 216 | No | 0.05 | 220 | No | <0.01 | | | 55 | 232 | 212 | No | 0.11 | 218 | No | 0.09 | 223 | No | 0.01 | | | 60 | 232 | 214 | No | 0.16 | 220 | No | 0.14 | 225 | No | 0.02 | | | 65 | 232 | 216 | No | 0.23 | 223 | No | 0.25 | 227 | No | 0.08 | | | 70 | 232 | 219 | No | 0.36 | 225 | No | 0.34 | 230 | No | 0.28 | | | 75 | 232 | 221 | Yes | 0.5 | 228 | Yes | 0.5 | 233 | Yes | 0.61 | | | 80 | 232 | 224 | Yes | 0.64 | 231 | Yes | 0.66 | 236 | Yes | 0.87 | | | 85 | 232 | 227 | Yes | 0.77 | 234 | Yes | 0.79 | 239 | Yes | 0.98 | | | 90 | 232 | 231 | Yes | 0.89 | 238 | Yes | 0.91 | 244 | Yes | >0.99 | | | 95 | 232 | 237 | Yes | 0.98 | 245 | Yes | 0.99 | 251 | Yes | >0.99 | | | 5 | 238 | 189 | No | <0.01 | 191 | No | <0.01 | 192 | No | <0.01 | | | 10 | 238 | 195 | No | <0.01 | 197 | No | <0.01 | 199 | No | <0.01 | | | 15 | 238 | 199 | No | <0.01 | 202 | No | <0.01 | 204 | No | <0.01 | | | 20 | 238 | 203 | No | <0.01 | 206 | No | <0.01 | 208 | No | <0.01 | | | 25 | 238 | 206 | No | <0.01 | 209 | No | <0.01 | 211 | No | <0.01 | | | 30 | 238 | 208 | No | <0.01 | 211 | No | <0.01 | 214 | No | <0.01 | | | 35 | 238 | 211 | No | 0.01 | 214 | No | <0.01 | 216 | No | <0.01 | | 7 | 40 | 238 | 213 | No | 0.01 | 216 | No | 0.01 | 219 | No | <0.01 | | , | 45 | 238 | 215 | No | 0.03 | 219 | No | 0.02 | 221 | No | <0.01 | | | 50 | 238 | 217 | No | 0.04 | 221 | No | 0.03 | 224 | No | <0.01 | | | 55 | 238 | 219 | No | 0.07 | 223 | No | 0.06 | 226 | No | <0.01 | | | 60 | 238 | 222 | No | 0.14 | 226 | No | 0.12 | 229 | No | 0.01 | | | 65 | 238 | 224 | No | 0.2 | 228 | No | 0.18 | 231 | No | 0.02 | | | 70 | 238 | 226 | No | 0.27 | 231 | No | 0.26 | 234 | No | 0.13 | | | 75 | 238 | 229 | No | 0.4 | 233 | No | 0.35 | 237 | No | 0.39 | | | 80 | 238 | 232 | Yes | 0.55 | 236 | Yes | 0.5 | 240 | Yes | 0.72 | | | 011 | 0 | | Fall | | | Winter | | Spring | | | | |-------|------------------|---------------|------|-----------------------|-------|--------|-------------------------|-------|--------|-----------------------|-------|--| | Grade | Start Percentile | Spring
Cut | Fall | Projected Proficiency | | Winter | Winter Projected Profic | | Spring | Projected Proficiency | | | | | i ercentile | Out | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | | 85 | 238 | 235 | Yes | 0.69 | 240 | Yes | 0.7 | 244 | Yes | 0.96 | | | | 90 | 238 | 239 | Yes | 0.83 | 245 | Yes | 0.88 | 249 | Yes | >0.99 | | | | 95 | 238 | 246 | Yes | 0.97 | 251 | Yes | 0.98 | 256 | Yes | >0.99 | | | | 5 | 247 | 192 | No | <0.01 | 194 | No | <0.01 | 196 | No | <0.01 | | | | 10 | 247 | 199 | No | <0.01 | 201 | No | <0.01 | 203 | No | <0.01 | | | | 15 | 247 | 203 | No | <0.01 | 206 | No | <0.01 | 208 | No | <0.01 | | | | 20 | 247 | 207 | No | <0.01 | 210 | No | <0.01 | 212 | No | <0.01 | | | | 25 | 247 | 210 | No | <0.01 | 213 | No | <0.01 | 215 | No | <0.01 | | | | 30 | 247 | 212 | No | <0.01 | 216 | No | <0.01 | 218 | No | <0.01 | | | | 35 | 247 | 215 | No | <0.01 | 219 | No | <0.01 | 221 | No | <0.01 | | | | 40 | 247 | 217 | No | <0.01 | 221 | No | <0.01 | 224 | No | <0.01 | | | | 45 | 247 | 220 | No | 0.01 | 224 | No | 0.01 | 226 | No | <0.01 | | | 8 | 50 | 247 | 222 | No | 0.02 | 226 | No | 0.01 | 229 | No | <0.01 | | | | 55 | 247 | 224 | No | 0.03 | 228 | No | 0.02 | 231 | No | <0.01 | | | | 60 | 247 | 227 | No | 0.07 | 231 | No | 0.05 | 234 | No | <0.01 | | | | 65 | 247 | 229 | No | 0.1 | 233 | No | 0.08 | 237 | No | <0.01 | | | | 70 | 247 | 232 | No | 0.18 | 236 | No | 0.16 | 239 | No | 0.01 | | | | 75 | 247 | 234 | No | 0.25 | 239 | No | 0.23 | 242 | No | 0.08 | | | | 80 | 247 | 237 | No | 0.37 | 242 | No | 0.35 | 246 | No | 0.39 | | | | 85 | 247 | 241 | Yes | 0.55 | 246 | Yes | 0.55 | 250 | Yes | 8.0 | | | | 90 | 247 | 246 | Yes | 0.75 | 251 | Yes | 0.77 | 255 | Yes | 0.99 | | | | 95 | 247 | 252 | Yes | 0.92 | 258 | Yes | 0.95 | 262 | Yes | >0.99 | | Table 3.11. Proficiency Projection Based on RIT Scores—Science | | 24.4 | Spring
Cut | Fall | | | | Winter | | Spring | | | | |-------|------------------|---------------|------|-----------------|--------|--------|-----------------|--------|--------|-----------------------|-------|--| | Grade | Start Percentile | | Fall | Projected Profi | ciency | Winter | Projected Profi | ciency | Spring | Projected Proficiency | | | | | reiceillie | | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | | 5 | 204 | 174 | No | <0.01 | 177 | No | <0.01 | 179 | No | <0.01 | | | | 10 | 204 | 178 | No | <0.01 | 181 | No | <0.01 | 183 | No | <0.01 | | | | 15 | 204 | 181 | No | 0.01 | 184 | No | 0.01 | 187 | No | <0.01 | | | | 20 | 204 | 184 | No | 0.03 | 187 | No | 0.03 | 189 | No | <0.01 | | | | 25 | 204 | 186 | No | 0.06 | 189 | No | 0.04 | 191 | No | <0.01 | | | | 30 | 204 | 188 | No | 0.08 | 191 | No | 0.07 | 193 | No | <0.01 | | | | 35 | 204 | 190 | No | 0.12 | 193 | No | 0.11 | 195 | No | 0.01 | | | | 40 | 204 | 192 | No | 0.19 | 195 | No | 0.18 | 197 | No | 0.02 | | | | 45 | 204 | 193 | No | 0.24 | 196 | No | 0.23 | 199 | No | 0.08 | | | 4 | 50 | 204 | 195 | No | 0.28 | 198 | No | 0.27 | 200 | No | 0.13 | | | | 55 | 204 | 197 | No | 0.39 | 200 | No | 0.38 | 202 | No | 0.28 | | | | 60 | 204 | 198 | No | 0.44 | 201 | No | 0.44 | 204 | Yes | 0.5 | | | | 65 | 204 | 200 | Yes | 0.56 | 203 | Yes | 0.56 | 205 | Yes | 0.61 | | | | 70 | 204 | 202 | Yes | 0.61 | 205 | Yes | 0.62 | 207 | Yes | 8.0 | | | | 75 | 204 | 204 | Yes | 0.72 | 207 | Yes | 0.73 | 209 | Yes | 0.92 | | | | 80 | 204 | 206 | Yes | 0.81 | 209 | Yes | 0.82 | 211 | Yes | 0.98 | | | | 85 | 204 | 208 | Yes | 0.88 | 211 | Yes | 0.89 | 214 | Yes | >0.99 | | | | 90 | 204 | 211 | Yes | 0.92 | 215 | Yes | 0.96 | 217 | Yes | >0.99 | |
 | 95 | 204 | 216 | Yes | 0.98 | 219 | Yes | 0.99 | 222 | Yes | >0.99 | | | | 5 | 212 | 183 | No | <0.01 | 184 | No | <0.01 | 185 | No | <0.01 | | | | 10 | 212 | 187 | No | <0.01 | 189 | No | <0.01 | 190 | No | <0.01 | | | | 15 | 212 | 191 | No | 0.01 | 192 | No | 0.01 | 193 | No | <0.01 | | | 6 | 20 | 212 | 193 | No | 0.02 | 195 | No | 0.02 | 196 | No | <0.01 | | | 0 | 25 | 212 | 195 | No | 0.03 | 197 | No | 0.03 | 198 | No | <0.01 | | | | 30 | 212 | 197 | No | 0.06 | 199 | No | 0.05 | 200 | No | <0.01 | | | | 35 | 212 | 199 | No | 0.1 | 201 | No | 0.1 | 202 | No | <0.01 | | | | 40 | 212 | 201 | No | 0.16 | 202 | No | 0.12 | 204 | No | 0.01 | | | Grade Pe | 24 4 | Spring
Cut | Fall | | | | Winter | | Spring | | | | |----------|------------------|---------------|------|-----------------------|-------|--------|-----------------------|-------|--------|-----------------------|-------|--| | | Start Percentile | | Fall | Projected Proficiency | | Winter | Projected Proficiency | | Spring | Projected Proficiency | | | | | 1 Crocitiic | | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | RIT | At Proficiency | Prob. | | | | 45 | 212 | 202 | No | 0.16 | 204 | No | 0.19 | 206 | No | 0.04 | | | | 50 | 212 | 204 | No | 0.24 | 206 | No | 0.23 | 207 | No | 0.08 | | | | 55 | 212 | 206 | No | 0.34 | 208 | No | 0.33 | 209 | No | 0.2 | | | | 60 | 212 | 207 | No | 0.39 | 209 | No | 0.39 | 211 | No | 0.39 | | | | 65 | 212 | 209 | Yes | 0.5 | 211 | Yes | 0.5 | 212 | Yes | 0.5 | | | | 70 | 212 | 211 | Yes | 0.56 | 213 | Yes | 0.61 | 214 | Yes | 0.72 | | | | 75 | 212 | 213 | Yes | 0.66 | 215 | Yes | 0.72 | 216 | Yes | 0.87 | | | | 80 | 212 | 215 | Yes | 0.76 | 217 | Yes | 0.81 | 219 | Yes | 0.98 | | | | 85 | 212 | 218 | Yes | 0.87 | 220 | Yes | 0.9 | 221 | Yes | 0.99 | | | | 90 | 212 | 221 | Yes | 0.94 | 223 | Yes | 0.96 | 225 | Yes | >0.99 | | | | 95 | 212 | 226 | Yes | 0.99 | 228 | Yes | 0.99 | 230 | Yes | >0.99 | | #### References - Indiana Department of Education (IDOE). (2019). 2019 ILEARN grades 3-8 statewide summary disaggregated. Retrieved from https://www.in.gov/doe/files/ilearn-2019-grade3-8-final-statewide-summary-disaggregated.xlsx - Kolen, M. J., & Brennan, R. L. (2004). *Test equating, scaling, and linking: Methods and practices* (2nd ed.). Springer. https://doi.org/10.1007/978-1-4939-0317-7 - Lewis, K., & Kuhfeld, M. (2024). *MAP Growth with enhanced item-selection algorithm: Updates on score comparability*. NWEA Research Report. NWEA. https://www.nwea.org/uploads/Research-MAP-Growth-with-enhanced-item-selection-algorithm-updates-on-score-compatibility NWEA Research Guide.pdf - Lumley, T. (2019). *Survey: Analysis of complex survey samples*. (R package version 3.36) [Computer software]. Available from https://CRAN.R-project.org/package=survey. - Meyer, J. P., Hu, A. H., & Li, S. (2023). *Content Proximity Spring 2022 Pilot Study Research Brief.* NWEA Research Report. NWEA. https://www.nwea.org/uploads/Content-Proximity-Project-and-Pilot-Study-Spring-2022-Research-Report.pdf - NWEA. (2025). *MAP Growth achievement status and growth norms for students and schools*. [Tech Rep.]. NWEA. - Pommerich, M., Hanson, B., Harris, D., & Sconing, J. (2004). Issues in conducting linkage between distinct tests. *Applied Psychological Measurement*, *28*(4), 247–273. https://doi.org/10.1177/0146621604265033