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Introduction

The beauty of the mathematical idea of proportionality is too 
easily lost in a clutter of procedures and rules. As such, it may 
seem mysterious to students despite the best efforts of teachers. 
Yet, as Lesh, Post, & Behr (1988) contend, proportional reasoning 
is the capstone of arithmetic and the cornerstone of advanced 
mathematics (p. 94). Given this importance, it is essential to examine 
how we might build strong ways of thinking to help students better 
understand proportional relationships. 

In this article we attempt to declutter proportionality. We do not 
approach thinking about proportional relationships as simply setting 
up and solving proportional equations! Instead, we want students to 
think about varying quantities and to investigate patterns so they can 
describe quantities in terms of proportional relationships. Students 
encounter proportional relationships in their everyday world, and we 
provide examples of where these relationships surface and how we 
can approach building strong ways of thinking. We also recognize 
that this is just the beginning of a longer journey towards developing 
a robust understanding of proportionality.

Additionally, the student experiences we describe highlight 
the power of modeling with mathematics. After all, the story of 
proportional relationships begins with the practice of collating data 
from real-world scenarios, recognizing a particular structure in data 
that is common to many scenarios, and then using that insight about 
structure to solve problems. Then, once students’ algebraic skills 
have evolved, the kicker emerges: one comes to realize that this 
identified structure can be perfectly encapsulated and described by 
a single equation of the form y = rx. The stunning power of modeling 
with mathematics is now brought to the forefront! 

This simple and profound story, however, is typically obscured. Our 
work here is to declutter this beautiful and important subject. 
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The setup
Many common scenarios in the world, in everyday life, and in mathematics involve 
two or more quantities that 

i) we can naturally measure, 

(a count of objects, a length, a temperature, or a time period, for example)

ii) whose measures can or do adopt a variety of possible values, 

(one can imagine buying different counts of apples or one can run an experiment 
for different lengths of time, for instance) 

and

iii) whose measures seem related to each other.

(The number of dollars spent depends on the number of apples bought: as I buy 
more apples, I spend more dollars. The area of a circle depends on the length of its 
radius: if I decrease the radius, I will also decrease the area.) 

Moreover, it is not uncommon for us to recognize scenarios involving two 
measurable quantities whose measures vary in a particularly straightforward way: 

iv) the measures “scale in tandem.”

By this we mean that if we double the measure of one quantity, the measure of the 
second doubles as well; if we triple the measure of one quantity, the measure of the 
second triples as well; if we halve the measure of one quantity, the measure of the 
other halves as well; and so on.  
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Common sense usually allows us to determine 
when this is or is not the case for a given 
scenario.

Scenario: Consider a stack of identical books. 
The height of the stack (as measured in cm, 
say) and the count of books (measured as a 
number) are two quantities we can measure, 
whose measures can take on a variety of 
different values, with values that are related 
to each, and related specifically via scaling in 
tandem: to double the height of a stack, double 
the count of books; changing the count of 
books by a factor of ten gives a new stack ten 
times the height; and so on. 

Scenario: At present the euros to US dollar 
exchange rate is €100 = $114. The count of 
euros one might have and the matching count 
of US dollars (USD) are quantities we can 
measure, measures that can take on varying 
values, with values that are related to each 
other, and related specifically via scaling in 
tandem: €200 in my pocket (double the stated 
figure) corresponds to $228; and $19 (one-sixth 
of 114) is worth €16.67 (one-sixth of 100, up  
to rounding).

Scenario: I walk away from home, directly east, 
at a constant speed of 5 miles per hour, without 
a break. After one hour of walking my distance 
from home will be 5 miles. After 1.5 hours of 
walking, my distance from home will be 1.5 
times as much as after one hour, namely, 7.5 
miles. After 24 hours of walking, I’ll be 24  
times as much as after one hour, or 120  
miles from home.

Scenario: If a count of 720 people represents 
60% of a town’s population, then half of that, 
360 people, represents 30%, and a third of 
this, namely, 120 people, represents 10% of the 
town’s population. I now readily deduce that 
ten times this count, namely, 1200 people, is the 
entire town’s population. 

In each of these four scenarios we can indeed 
identify two quantities we can measure, whose 
measures can take on varying values, with 
values that are related to each other, and 
related specifically via scaling in tandem.

Scenario: Central Park is 2.5 miles long. 

This is a fine fact, but it is a statement only 
about the measure of one specific quantity that 
cannot adopt different values.

Scenario: Anu is 5.5 feet tall and Benu is 6.1  
feet tall. 

The measures of two quantities are mentioned 
here, but there is no indication in this scenario 
that these measures can or should be 
considered to change.

Scenario: The ratio of boys to girls in a class is 
3:5. There are 16 students in the class.

Two measures are implied here—a count of boys 
and a count of girls—but the statement that the 
total count of students is fixed means that the 
measures of these two counts is static: there 
are 6 boys and 10 girls. The number of students 
does not seem to be changing. 

However, if we were simply presented the 
scenario, “In a certain school, each class has a 
3:5 ratio of boys to girls,” then the count of boys 
and count of girls are measures that can adopt 
different values: one class could have 3 boys 
and 5 girls; another class could have 9 boys 
and 15 girls; another class 30 boys and 50 girls; 
and so forth. (And later in this article we will 
demonstrate that the data here—the count of 
boys in a class and the matching count of girls—
does indeed scale in tandem.) 

Scenario: Consider the areas and the perimeters 
of all the squares one can draw. 

Here we have two varying, measurable 
quantities—an area and a length—which are 
related to each other, but they do not scale in 
tandem: if we double the perimeter of a square, 
then its side length doubles to give a new 
square of quadruple the area, for instance. 

P = 4 P = 8
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Scenario: Consider a stack of identical books 
sitting on a table and the distance from the 
top of the stack to the floor. Again, we have 
two varying, measurable quantities—a count 
of books and the distance from the top of the 
stack to the floor—that are related to each 
other, but not via scaling in tandem, alas. If I 
double the count of books, the distance of the 
top of the stack to the floor does not double.

Scenario: If it takes 6 cats 4 hours to catch 7 
rats, then presumably it would take 12 cats half 
the time to catch 7 rats (2 hours), but it would 
take 3 cats double the time (8 hours) to catch 
7 rats. The count of cats and the number of 
hours needed to catch 7 rats are not scaling in 
tandem. (When one doubles, the other halves, 
for instance.)

Scenario: If it takes 22 minutes for 1 sock to dry 
when hung on a clothesline, then 2 socks will 
still take 22 minutes to dry! 

Scenario: No matter how many carrots I eat in a 
day, my shoe size does not change. (There is no 
reason that the count of carrots I eat in any one 
day should affect my shoe size for that day.) 

Definition¹: Two measurable quantities in a 
given scenario that can, or do, vary in value are 
said to be in a proportional relationship if they 
“scale in tandem,” that is, if the measure of one 
quantity in the scenario changes by a factor k, 
then the measure of the other quantity is sure 
to also change by the same factor k.

And just to be clear, people might use the 
term proportional reasoning to mean the 
act of identifying two measurable quantities 
in a scenario whose measures covary via 
a proportional relationship, along with the 
subsequent act(s) of using mathematical 
techniques and one’s common sense to  
answer questions about that scenario.

¹ See Thompson & Saldanha, 2003.
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notions we introduce, temporarily, a new 
symbol: the double arrow. You might prefer to 
use an equal sign instead of a double arrow or 
present your data in a table or with a pair of 
number lines. Whatever is sensible and makes 
sense to you is fine! 

Here is the one data pair we are given.

27 dolls              15 dollars

Using scaling in tandem, we also have

54 dolls                30 dollars
540 dolls                300 dollars

1,620 dolls                900 dollars

and so on.

But we want the count of dolls that “goes with” 
$1,000. So let’s scale in tandem with intention. 

We have

27 dolls              15 dollars

To convert $15 dollars into $1,000 we can scale 
by one-third and then scale by 200. 

9 dolls              5 dollars
1,800 dolls              1,000 dollars

So we can purchase 1,800 dolls for $1,000.

But the question wants us to keep going for 
different dollar amounts. This work is going 
to get awfully tedious. Can I come up with 
a general formula for how many dolls I can 
purchase for k dollars?

Well, we had

9 dolls              5 dollars

Scaling this by one-fifth gives

1.8 dolls              1 dollar

A worked example
When presented with a scenario of some  
kind, ask:

1. Are there two measurable quantities in the 
scenario of interest that can, or do, adopt a 
variety of different values? 

If so, next ask:

2. Does it seem reasonable to presume these 
measures scale in tandem?

If so, then you are all set to use common  
sense to answer sophisticated questions  
about that scenario. 

Example
I can buy 27 Kewpie dolls for $15. 

a) How many dolls can I buy for $1,000? How 
many can I buy for $1,200? How many can I buy 
for $2,335 and for $330 and for $7,000 and for 
$850 and for a million dollars?

b) Sameer bought 549 dolls. How much did  
he spend?

Answer
We certainly have two measurable quantities 
in this situation: a count of Kewpie dolls 
purchased and a dollar value of that expense. 

One might argue that in this scenario these two 
quantities are probably NOT in a proportional 
relationship: one usually gets a discount with 
bulk purchases, so ordering a thousand-fold 
dolls is likely not to cost you 1,000 times as 
much. (You might get a 20% discount, perhaps.) 

But let’s put that caveat aside and assume that 
purchasing three times as many dolls costs 
three times as much, purchasing 100 times as 
many dolls, 100 times as much, and so on.  
That is, let’s assume we do have a  
proportional relationship. 

Relationships between two quantities are often 
presented in tables or with equal signs, but to 
help avoid mixing new ideas with preconceived 
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Reality is a little weird here. They will certainly 
not sell me fractional dolls. But let’s carry on 
and assume the manufacturer will handle this 
in some nice way for us. (Maybe the rule is that 
Kewpie dolls must be bought in sets of nine?)

Scaling by k we have

1.8k dolls                k dollars

There we have it, a general formula. We 
can purchase 1.8k dolls for $k. Now we can 
complete part a) of the question if we wish. 

Actually, we can complete part b), too! We just 
need to solve 549 = 1.8k. 

k =               =                       = 61 × 5 = 305

Doing so shows that Sameer spent $305 to buy 
549 dolls.

549
1.8

9 × 61
9 × .02
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A few common places where proportional relationships arise
Here we present various scenarios where common sense informs us that a proportional 
relationship is at play.

1. Unit conversion (exchange rates)
A length of 100 inches matches a length of 254 cm.

100 inches              254 cm

If we scale the count of inches by a factor k, then common sense tells us the count of 
centimeters measured will scale by k as well. 

To find the measure of a one-meter (100 cm) length, say, in inches, we can scale by a factor 
of 1⁄254 and then by a factor of 100.

          inches              1 cm

  
          inches      39.4 in              100 cm = 1m

  

At present, 100 euros have a value 114 US dollars.

€100              $114 

To find the value of €365, for example, we can use 365⁄100 as a scale factor.²

€365                           × 144 = $146.10

~~

² Or scale by 1⁄100 then scale by 365.

100
254

365
100

10000
254
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2. Constant rates
A scenario that describes a constant rate of 
some kind usually leads to a proportional 
relationship.

Suppose that I am taxed at a constant rate of 35 
cents for every dollar earned.

$1 earned              $0.35 for the IRS

If I earned $44,230 last year, I will pay 
$44,230 × 0.35 = $15,480.50 in taxes.

$44230 earned              $15480 for the IRS

The road to Wagga Wagga rises at a constant 
rate of 100 feet for every mile driven along 
the road. 

1 mile              100 feet

After how many miles of driving will I have 
increased in elevation by one mile?

We can scale by a factor of 52.8.

52.8 miles              5280 feet

Answer: 52.8 miles.

A train moves at a constant speed of 65 mph.

1 hour              65 miles traversed

How long will it take to traverse 200 miles?

            3.08 hours              200 miles

Answer: About three hours and five minutes.

Comment: There is a subtle point to be made 
here. The data being collected in this scenario 
of a train traveling at a constant rate is the 
time spent traveling and the distance traversed 
during that time and not an actual time of day 
and an actual distance from a fixed location. 

For example, if I board the train at the station 
located 5 miles from home at 3:00 p.m., my 
distance from home is not in a proportional 
relationship with the hour shown on my clock.  
In general, a statement of a constant rate of 
change is usually a statement about changes in 
quantities. As an absurd example, “a constant 
increase of 2 floogles per neeb” informs us that

and that these changes scale in tandem. (Thus 
a change of 4 floogles matches a change of 2 
neebs, and so on.) We do not know anything 
about the actual count of floogles and actual 
count of neebs at any instant. 

Question: I will tell you some specific values 
for the quantities of floogles and neebs. Last 
week I had 17 floogles and 12 neebs. I watered 
them and this week I counted 34 floogles in my 
closet. How many neebs should I expect  
to count?  

3. Percentages
135% of a quantity is 156. What is the quantity?

135%              value 156

1%               value

            100%               value                 = 115

A change of 
2 floogles

A change of 
1 neeb

200
65

156
135

15600
135

5
9

~~
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4. Scaled drawings
A scaled drawing or a map provides a scenario 
with two measurable quantities: the distances 
on the drawing and the distances in the real 
world. Each drawing comes with an indication 
of “scale.” For instance, seeing 1:500 printed 
in the corner of a map indicates that one unit 
of measure on the map matches 500 units of 
measure in the real world.

1 unit on map               500 miles in real world
  
 
 

 
 
 

If the distance between two particular trees on 
the map is 3 cm, how far apart are those trees 
in real life?

3 cm on map               1500 cm in real world

Answer: The trees are 15 meters apart.

5. Similar figures in geometry
Stand in front of a friend, face-to-face, just 
a couple of feet apart. Raise your hands at 
about the halfway point and use the index 
finger of each hand to judge the width of your 
friend’s face: line your left index finger with 
the left edge of your friend’s face, your right 
index finger with the right edge of her face. 
(You might need to close one eye to do this.) 
Then look at the distance between your two 
fingers: that distance is half the width of your 
friend’s face!

Similar triangles (and similar figures, in general) 
in geometry yield relationships between lengths 
that scale in tandem. 

6. Ratios
Loosely speaking, two quantities in a scenario 
are said to come in an “a to b ratio,” written 
a:b, if whenever a groups of the first quantity 
appear in the scenario, then b groups of the 
second quantity also appear. 

For example, let’s return to our boy-to-girl 
student example. If a class of 16 students has 
a boy-to-girl ratio of 3:5, then we know if we 
divide the boys into three same-sized groups, 
there are five matching same-sized groups  
of girls. 

In this example there are eight groups in total, 
so we deduce that the group size is two and 
that there are thus six boys and ten girls.

3cm
1:500

W

L

L 
2

W 
2

W 
3

L 
3

Your friend’s face
(looking from above)

Your eye

16 students in total

boys

girls
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Ratios often appear in “static scenarios” where 
no quantities are presumed to vary in measure, 
simply that the measures of one or two 
quantities are unknown and are to be deduced.

But a scenario could describe two quantities 
whose measures vary in “constant ratio.” This 
does lead to a proportional relationship.  

Example 
In a certain school all classes have a boy-to-girl 
ratio of 3:5.

This scenario does lead to data: the count of 
boys and the matching count of girls in all 
possible classes. By imagining different group 
sizes in this diagram, we get the following data:

In general, we have:

Group size N:   3N boys               5N girls

Does this data scale in tandem? 

Suppose we change the number of boys in a 
class by a factor k, from 3N boys to 3Nk boys. 
Must the count of girls change by that factor, 
too, to 5Nk girls? 

Well, 3Nk boys corresponds to three groups 
of size Nk. (We have 3Nk = 3(Nk).)  So there 
must be five groups of girls of this size, indeed 
making for 5(Nk) = 5Nk girls.

3N boys                5N girls

(3N)  ×  k boys                (5N)  ×  k girls

As a result, k represents the scale factor of boys 
to girls. The data is scaling in tandem and we 
have a proportional relationship between the 
count of boys and the count of girls.

boys

girls

Group size 1 3 boys 5 girls
Group size 2 6 boys 10 girls
Group size 3 9 boys 15 girls
Group size 4 12 boys 20 girls
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Tables and double number lines
The double-arrow notation can be handy, but others might prefer to present their 
data in a table.

Here’s a table of the measures of two quantities, A and B.
 

Using the double-arrow notation, the first line can be read as

and we see that each line of this table does appear as a co-scaled version of this 
first relation.

Some people like to turn the table sideways and imagine the table of values along 
two parallel number lines. 

A B
5 7

10 14
30 42

3 4.2
6 8.4

5 units of
quantity A

7 units of
quantity B
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Here are the two number lines with the first 
data pair aligned on them.

This suggests that, on the “A number line,” five 
units of distance from the left matches seven 
units of distance from the left on the “B number 
line.” If we double the data values, these should 
give matching positions on the number lines of 
double the distances. 

And if we continue scaling in this way—tripling 
the data values and tripling the distances along 
each number line; halving the data values and 
halving the distances along each number line; 
and so on—then we should have two parallel 
number lines whose values along it match  
all possible data values one might write in  
the table. 

This allows us to eyeball additional matching 
data values. For example, we might argue that 
8 on the A number line matches 11.2 on the B 
number line.

A

B

5 10

7 14

A

B

5

7

A

B

53 6 10

74.2 8.4 14

Check: Use scaling in tandem from

to get

That is, 

Comment: The double number line suggests 
that zero on the A number line matches zero on 
the B number line. Is this correct? Is x = 0, y = 0 
a data point that belongs to the table? 

Yes! From 

scale by a factor of zero to get

In general (0,0) is a valid data point for any two 
quantities in a proportional relationship.

0 units of
quantity A

0 units of
quantity B

5 units of
quantity A

7 units of
quantity B

5 units of
quantity A

7 units of
quantity B

8 units of
quantity A

11.2 units of
quantity B

× 5 units of
quantity A

     × 7 units of
quantity B

8
5

8
5
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Tables and equations
It is natural to represent the measures of 
quantities by letters of the alphabet that relate 
to the quantity being measured: A for the 
number of apples, d for the number of dollars, 
h for the height of the stack, and so forth. But 
in mathematics there is a strong predilection 
to repeatedly use the letters x and y for two 
unknown values. We now venture there as well. 

Here again is the data of the previous section, 
with the two variables of concern renamed. 
We will presume that the two quantities 
represented here are indeed in a  
proportional relationship. 

From the line

(or from any other line, for that matter) we see 

and so 

x y
5 7

10 14

30 42

3 4.2

6 8.4

x y
a b

1 b / a

x (b / a) x

Thus, we see that the variables satisfy 
the equation

y = 1.4x

That is, for any pair of values x and y that 
belong to a row of this table, the second value 
is sure to be 1.4 times as large as the first.

This argument shows that for any two quantities 
in a proportional relationship with measures 
represented by the variables x and y, specific 
instances of these measures are sure to satisfy 

y = rx

for some fixed number r. 

If

then

and so 

of the second quantity. 

a units of the
first quantity

b units of the 
second quantity

x units of the
first quantity

1.4x units of the 
second quantity

1 unit of the
first quantity

1.4 units of the 
second quantity

10 units of the
first quantity

14 units of the 
second quantity

1 units of the
first quantity

     units of the 
second quantity

b
a

x units of the
first quantity

       x units of the 
second quantity

b
a( )

x y
5 7

10 14
30 42

3 4.2
6 8.4
1 1.4
x 1.4x
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What do we mean by an equation?
People say that mathematics is a language. 
This is true. Since this article is being written 
in English, the language of mathematics is … 
English! (And if we were writing in Hindi or in 
Korean, the language of mathematics would be 
Hindi or Korean.)

Every mathematical statement is a sentence. 
For example, the statement 

2 + 3 = 5

has a noun (the quantity “2 + 3”), a verb 
(“equals”), and an object (the quantity “5”). 

The statement 

3 > 4 + 6 

is also a sentence.

The first sentence happens to be a true 
sentence about numbers and the second a false 
sentence about numbers. As mathematics tends 
to focus on truth, it is interested in sentences 
that represent true statements about numbers.

The sentence 

y = 0.6x

about two unspecified numbers called x and y, 
for instance, is neither true nor false as it stands: 
it all depends what specific two values one 
might assign to the two variables. If x = 10 and 
y = 6, then we will have a true sentence about 
numbers. If x = 2 and y = 50, then we will have a 
false sentence about numbers.

Given an equation, it is natural then to seek 
from it all the values of the variables that make 
the sentence a true sentence about numbers. 

One collects from an equation all the data 
values that make the equation a true sentence 
about numbers.

For example, from y = 0.6x, we can create, by 
trial and error, a table of data values that each 
yield a true number sentence.

Question: If one triples the entries of the final 
row shown, do we generate a new pair of data 
values that also make the equation y = 0.6x a 
true number sentence? 

Yes! One checks that x = 6 and y = 3.6 do 
indeed fit the equation.  

Question: In general, does all the data in this 
example scale in tandem?

We have that x = 2 and y = 1.2 make y = 0.6x a 
true number sentence.

1.2 = 0.6 × 2

If we scale each value by a factor k, are x = 
2k and y = 1.2k sure to lead to a true number 
sentence as well?  

In algebra we believe that multiplying both 
sides of an equation by a common factor does 
not alter the truth of that equation. So we see 

(1.2)k = (2 × 0.6)k

is a true number sentence. Since this can  
be rewritten

(1.2k) = 0.6 × (2k)

we see indeed that x = 2k and y = 1.2k fit the 
equation y = 0.6x, too.

x y
10 6

5 3

2 1.2



Proportional relationships decluttered—at last!   |   16

Data generated from an equation of the form 
y = rx is sure to scale in tandem.

This is profound: we now have a complete and 
robust algebraic formulation of a proportional 
relationship between two covarying measurable 
quantities in a scenario.

The data arising from any proportional relationship 
satisfies an equation of the form y = rx for some 
fixed constant r. And, conversely, the data that 
arises from any given equation of the form y = rx is 
in a proportional relationship.

Examples  
From 

€100              $114

we obtain  

€1              $1.14

and

€x              $1.14x

We imagine scaling the number of euros by x, 
thus we need to scale (in tandem) the number 
of dollars by x. Thus, x represents the scale 
factor. And we see that the “exchange rate” 
from euro (x) to USD (y) is 1.14 and can use the 
formula y = 1.14x to readily convert from euro  
to USD.

Alternatively, we could focus on USD and write 

€                 0.877               $1

and

€0.877x               $x

and see that the USD to euro exchange rate is 
0.877 with corresponding formula y = 0.877x to 
convert from USD (x) to euro (y).

From 

$1 earned                $0.35 for the IRS

we see that I pay taxes at a rate of 0.35, and 
we have the formula y = 0.35x to compute the 
count of dollars to go to taxes (y) if I earn  
x dollars.

For the rising road to Wagga Wagga we have

1 mile                100 feet

and we say that the road is rising at a rate 
of 100 feet per mile traversed. We have the 
general formula y = 100x for computing rise 
(y feet) over x miles traversed.

For a train moving at constant speed

1 hour                65 feet

we say that it is moving at a constant rate of 
65 miles per hour. We have the formula y = 65x 
for computing the miles (y) traversed for the 
number of hours of motion (x).

Definition: For two measurable quantities x and 
y in a proportional relationship, we can find a 
number r so that  

This number is called the rate (or in some 
curricula, the “unit rate”) of the proportional 
relationship. We have that the data of the 
relationship satisfies the equation y = rx. 

As the euro/USD exchange rate example shows, 
one can make choices as to which quantity to 
focus on as the “driving force” of the scenario: 
focusing on USD gives an exchange rate 
from USD to euro; focusing on euro gives an 
exchange rate from euro to USD. 

In any scenario, one relies on context to decide 
which quantity in the scenario to focus on. 

~~100
114

1 unit of 
quantity x

r units of 
quantity y
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Comment: One might be able to recognize a 
“y = rx” relationship by reading across the rows 
of a table of data. For instance, for this data 

we notice that each value in the right column 
is one-and-a-half times as large as its matching 
value in the left column, and so we see that this 
small data set is following an equation of the 
form y = 1.5x. If we have reason to believe this 
pattern persists for all possible data values,  
then we can say that the data is conforming  
to a proportional relationship. 

The value r in a relationship identified 
algebraically via y = rx is often called the 
constant of proportionality.

The constant of proportionality is the rate.

Comment: One might instead notice that each 
pair of values in a row of the table produce 
equivalent ratio values when dividing one by 
the other. For instance, in the table we see that 
9⁄6 and 15⁄10 and 3⁄2 and   ⁄5 each have value 1.5. 
This suggests that the equation

y/x = 1.5 

is at play, which, of course, is equivalent to the 
equation y = 1.5x. (Unless the data point x = 0,  
y = 0 is listed in the table!)   

x y
6 9

10 15

2 3

5 7.5

7.5
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Graphs
An equation of the form y = rx graphs as a straight line through the origin. And as any set of 
data arising from a proportional relationship follows an equation of this form, that data must 
plot as a straight line through the origin. 

(10, 6)

(5, 3)

(2, 1.2)(0, 0)

x y
10 6

5 3

2 1.2

0 0

Conversely, any data that plots along a straight line through the origin follows an equation of 
the form y = rx and so represents a proportional relationship.



Proportional relationships decluttered—at last!   |   19

One can also see this via the tools of geometry 
rather than the tools of algebra:

If (a, b) is a point on a line through the origin, 
then similar triangles show that (ka, kb) is also 
on that line. 

So if

then we have established that 

The data that arises from points along a 
line through the origin are in a proportional 
relationship.  

The slope of the line though the origin arising 
from plotting data from a proportional 
relationship, y = rx, is r, the rate associated  
with the proportional relationship. The point  
(1, r) lies on the line plot.   

Comment: We have now seen the “rate”  
of a proportional relationship appear in  
multiple contexts.

i) When the measure of one quantity is 
scaled to unit value, the measure of the 
other quantity is r.

ii) r is the constant of proportionality of  
the algebraic equation that arises: y = rx.

ka

a

b

x

y

kb
(a, b)

iii) In each row of a data table, each value  
on the right is r times its matching value on  
the left.

iv) r is the slope of the line through the 
origin on which the plotted data sits.

v) The point (1, r) appears in the plot of  
data values. 

It is worth reflecting again for a moment to  
take stock of the various manifestations of this 
one number.

Direct variation
Science strives to supply structure and 
predictability to observed phenomena. This is 
most often accomplished by identifying the 
varying (and hopefully measurable) quantities 
in the scenario and writing an equation that 
holds true for possible values of the measures 
of those quantities. For example, Newton’s 
law of gravitation states that the gravitational 
force F experienced between two objects of 
masses M₁ and M₂ at a distance of r units apart 
(following standard scientific units) always have 
values that make

  F = G                

a true number sentence, where G here is a 
known fixed constant. 

To understand or to test predicted equations, 
scientists might run tests or experiments, 
keeping all but two of the mentioned quantities 
fixed in measure and varying the value of one to 
observe the matching value of the other. 

a units of 
quantity x

b units of 
quantity y

ka units of 
quantity x

kb units of 
quantity y

M  M
r
1

2
2



Proportional relationships decluttered—at last!   |   20

For example, we could (theoretically) test 
one aspect of Newton’s law of gravitation by 
measuring the gravitational force on objects 
of different masses held a fixed distance from 
the sun. (That is, with M₁ and r set to be fixed 
in value throughout our tests.) The law says we 
should have

F =

that is, that F and M2 should be in a proportional 
relationship (with the fixed value of GM1 ⁄ r2 the 
constant of proportionality).

Scientists will use the swift,  
asymmetrical notation 

F        M

and say that they expect F to vary directly with 
M1 to mean that these two quantities should 
scale in tandem (when all other quantities are 
held fixed). The asymmetry of the notation 
suggests that M1 is the variable of focus, the 
one whose value they will vary in tests, to 
record the matching values of F that result. 
We also see in Newton’s law of gravitation that 
F   M2 and even that F   (1 ⁄ r2) regarding the 
“reciprocal of the square of the distance” as a 
quantity to be measured in its own right!

This asymmetrical thinking often comes up 
in scenarios of a proportional relationship 
between two measurable quantities if it is 
natural to think of the measure of one quantity 
as the “driving force” of the scenario, with the 
measure of the other as dependent on these 
first measures. For example, in walking directly 
east at a constant speed of 5 miles per hour, the 
total distance I walk depends on the number 
of hours I’ve been walking. The distances one 
could walk are in a proportional relationship 
with the numbers of hours one can spend 
walking. But it feels natural to think of my time 
spent walking as the key factor here. To reflect 
this, people might say:

Distance walked is proportional to time 
spent walking

Following other examples in this essay, it might 
also feel natural to say:

The amount of money spent on Kewpie 
dolls is proportional to the number of  
dolls purchased. 

The amount of tax one pays is proportional 
to the total amount of money one earns.

The amount one rises along that road 
to Wagga Wagga is proportional to the 
distance one drives along it. 

In short, the phrase “is proportional to” 
indicates that the two measurable quantities 
mentioned are in a proportional relationship 
and, moreover, that the second quantity 
mentioned is considered the “driving force” in 
that scenario.1

(  )GM
r

1
2

M2
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Inverse variation
If it takes ten volunteers four hours to pack and address 600 envelopes, then doubling 
the number of volunteers on the task should halve the time needed to complete it. 
Tripling the count should require one-third of the time. Reducing the count of volunteers 
to just one (a factor of ten) will likely require ten times the hours. 

This scenario illustrates two measurable quantities—a count of volunteers and the time 
needed to complete the task—that seem to scale in “anti-tandem”! 

Two measurable quantities in a scenario are said to be in an inverse proportional 
relationship if changing the measure of one quantity by a factor k causes the measure of 
the other to change by a factor 1/k.   

Example
In sharing a cake, the amount of cake each person receives is inversely proportional to 
the number of people sharing the cake: triple the number of people and each person 
receives a piece reduced to a third of the size. 

A worked example
It takes 3 people 8 hours to wash all the 
windows of an office building. How many 
hours would it take 5 people to complete 
the task? 

We have

3 people              8 hours

Common sense tells us that that one 
person will take triple the time

1 person              24 hours

and then that five people will take one-
fifth of this time

5 people                      = 4.8 hours
    
The answer is 4.8 hours (four hours and 
48 minutes). 

If we denote the count of people on the 
job by x and the number of hours to 
complete the work by y, then from  

1 person              24 hours

we deduce 

x people                      hours

We see we have the equation y =      .

We can extend this work and deduce

The data arising from any inverse 
proportional relationship satisfies an 
equation of the form y = r / x for some 
fixed constant r. And, conversely, the 
data that arises from any given equation 
of the form y = r / x is in an inverse 
proportional relationship.

x y
3 8

1 24

5 4.8

x 24
x

24
5

24
x

24
x
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Thus if quantities x and y are in an inverse 
proportional relationship, then y   1 ⁄k. (Pause  
to take in what is being said here.)

Scientists say that y varies inversely with x.

Example
In Newton’s law of gravitation we can say that 
the gravitational force two objects mutually 
experience varies directly with the mass of each 
object and varies inversely with the square of 
the distance between the two objects.

One can apply the thinking of this article to 
scenarios involving more than two measurable 
varying quantities. This next example is based 
on a popular teaser.

A mixed example
If 6 cats can catch 7 rats in 4 days, to the 
nearest half hour, how long does it take 1 cat to 
catch 1 rat?

We have

6 cats               7 rats               4 hours

It seems we should assume that the count of 
cats varies inversely with time (if we double the 
count of cats, then the time needed to catch a 
fixed count of rats halves) and that the count 
of rats varies directly with time (doubling the 
count of rats to be caught by a fixed set of cats 
requires double the time).

Let’s adjust the numbers to 1 cat and then to 1 
rat, adjusting the time as we go along.

First, we observe that one-sixth of the count of 
cats will require six times the number of hours 
for a fixed count of rats.

1 cat               7 rats               24 hours

Next we observe catching one-seventh of the 
count of rats will require only one-seventh of 
the number of hours. 

1 cat               1 rat                     hours
  
And we are done! The answer is close to 3.5 
hours. 

Discussion: A real-life scenario
During a recent visit to Hong Kong, James 
noticed the exchange rate was 

1 HKD              0.127 USD

He rounded matters and held the exchange rate 
100 HKD ≈ 13 USD in his head. (So he knew that 
spending 10 HKD was equivalent to spending 
close to $1.30, spending 200 HKD was close to 
spending $26, and so on.) 

James discussed the exchange rate with a 
colleague who said she simply divided all the 
values by eight.

a. Explain why both methods, up to  
the rounding they each conducted, 
were equivalent.  

b. Do you think it would be natural 
for James to say that the number 
of HKD is “proportional to” the 
number of USD, or the other way 
around? What might a Hong Kong 
resident say? Is the “proportional to” 
language even relevant here?

24
7



Summary
We hope that this article is a useful tool to help teachers and others get started on a 
journey to identify the meaningful ideas inherent in proportionality. Proportionality 
does not need to be cluttered, either in the curriculum or in the minds of learners. It 
is not a collection of disconnected procedures and ideas. In fact, as we attempted to 
show here, it makes perfect sense when we begin by focusing on ways of thinking 
(scaling in tandem), rather than ways of doing. You may have noticed that in all of 
this we did not use typical ways of doing, such as setting up a proportion or cross 
multiplying. It wasn’t necessary, as simply thinking about the quantities did the work.

There is much more to learn and discuss, however. Some may want to think about 
connections to the development of multiplication and division. Others may want 
to examine how this thinking connects powerfully as a cornerstone to subsequent 
mathematics. A few may want to ponder existing definitions (and debates) about 
ratios and rates and how those may or may not be compatible with this presentation. 
We hope to have sparked some interest in further learning. More importantly, though, 
we hope that students can see the beauty and connectedness in the mathematics 
they experience in school. This is one place we can make that happen.
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