Linking Study Report: Predicting Proficiency on Ohio's State Tests (OST) in Grades 3–8 based on NWEA MAP Growth Scores

August 2022

NWEA Psychometric Solutions

Linking Study Updates

Date	Description
2013-01	Initial study conducted for Ohio in ELA and mathematics in Grades 3–8 using Spring 2012 data.
2016-08	Incorporated the 2015 MAP Growth norms using Spring 2016 data.
2018-03	Updated the report for ELA, mathematics, and science using Spring 2017 data.
2020-07-23	Incorporated the 2020 MAP Growth norms using Spring 2017 data for ELA, mathematics, and science in Grades 3–8. A linking study for the OST End-of-Course (EOC) assessments in ELA and mathematics was also conducted. Results are provided in a separate report (NWEA, 2020).
2021-12-17	Updated the results for the OST Science assessment using Spring 2021 data. The ELA and mathematics results from July 2020 remain the same but are included in this report so all up-to-date OST 3–8 linking study results are in one place.
2022-08-12	On July 12, 2022, Ohio's State Board of Education voted to raise the Third Grade Reading Guarantee (TGRG) promotion score from 683 to 685. This report was updated to reflect the new MAP Growth Reading RIT cut scores corresponding to the TGRG promotion cut in Section 3.4. No other changes to the report or linking study results were made.

Acknowledgements: This report benefited from the statistical analysis of Sarah-Truclinh Tran and Rudraxi Majumdar, the editorial assistance of Kelly Rivard, the project management of Debbie Bauman, and the psychometric leadership of Ann Hu. We appreciate our colleagues at NWEA who assisted in partner recruitment and are grateful to all our partners who provided data for the study.

© 2022 NWEA. NWEA and MAP Growth are registered trademarks of NWEA in the U.S. and in other countries. All rights reserved. No part of this document may be modified or further distributed without written permission from NWEA.

Table of Contents

Executive Summary	4
1. Introduction	8
1.1. Purpose of the Study	8
1.2. Assessment Overview	
2. Methods	9
2.1. Data Collection	9
2.2. Post-Stratification Weighting	9
2.3. MAP Growth Cut Scores	
2.4. Classification Accuracy	10
2.5. Proficiency Projections	11
3. Results	12
3.1. Study Sample	12
3.2. Descriptive Statistics	15
3.3. MAP Growth Cut Scores	16
3.4. Third Grade Reading Guarantee	
3.5. Classification Accuracy	
3.6. Proficiency Projections	22
4. References	32
List of Tables	
Table 2.1. Description of Classification Accuracy Summary Statistics	
Table 3.1. Linking Study Sample Demographics (Unweighted)	
Table 3.2. OST Student Population Demographics	
Table 3.3. Linking Study Sample Demographics (Weighted)	
Table 3.4. Descriptive Statistics of Test Scores	
Table 3.5. MAP Growth Cut Scores—ELA/Reading	
Table 3.6. MAP Growth Cut Scores—Mathematics	
Table 3.7. MAP Growth Cut Scores—Science	
Table 3.9. MAP Growth Reading Grade 3 Cut Scores for Ohio's TGRG Program Extended	19
Above and Below the Current Promotion Cuts—OST ELA	20
Table 3.10. MAP Growth Reading Grade 3 Cut Scores for Ohio's TGRG Program Extended	0
Above and Below the Current Promotion Cuts—OST Reading	21
Table 3.11. Classification Accuracy Results	
Table 3.12. Proficiency Projections based on RIT Scores—ELA/Reading	23
Table 3.13. Proficiency Projections based on RIT Scores—Mathematics	
Table 3.14 Proficiency Projections based on RIT Scores—Science	31

Executive Summary

To predict student achievement on Ohio's State Tests (OST) in Grades 3–8 for English language arts (ELA) and mathematics and in Grades 5 and 8 for science, NWEA[®] conducted a linking study using Spring 2017 data for ELA and mathematics and Spring 2021 data for science to derive Rasch Unit (RIT) cut scores on the MAP[®] Growth[™] assessments that correspond to the OST performance levels. Educators can use this information to identify students at risk of not meeting state proficiency standards early in the year and provide tailored educational interventions.¹ The linking study has been updated since the previous version published in July 2020 to generate new cut scores for the updated OST Science assessment. Results from the July 2020 linking study for ELA and mathematics remain the same but are included in this report so all up-to-date OST 3–8 linking study results are in one location.

E.1. Proficiency Cut Scores

Table E.1 presents the OST *Proficient* performance level cut scores and the corresponding MAP Growth RIT cut scores that allow teachers to identify students who are on track for proficiency on the state summative test and those who are not. For example, the *Proficient* cut score on the OST Grade 3 ELA test is 700. A Grade 3 student with a MAP Growth Reading RIT score of 189 in the fall is likely to meet proficiency on the OST ELA test in the spring, whereas a Grade 3 student with a MAP Growth Reading RIT score lower than 189 in the fall is in jeopardy of not meeting proficiency. MAP Growth cut scores for Grade 2 are also provided so educators can track early learners' progress toward proficiency on the OST test by Grade 3. These cut scores were derived based on the Grade 3 cuts and the 2020 NWEA growth norms for the adjacent grade (i.e., Grades 2 to 3).

Table E.1. MAP Growth Cut Scores for OST Proficiency

		Proficient Cut Scores by Grade						
Assessm	nent	2	3	4	5	6	7	8
ELA/Reading								
05	ST Spring	_	700	700	700	700	700	700
	Fall	175	189	198	203	211	215	222
MAP Growth	Winter	184	196	204	208	214	218	224
	Spring	188	199	206	210	216	219	225
Mathematics								
05	ST Spring	ı	700	700	700	700	700	700
	Fall	170	184	195	209	215	221	225
MAP Growth	Winter	179	192	202	215	220	225	228
	Spring	185	197	206	219	223	228	230

¹ This study provides MAP Growth cut scores that predict proficiency on OST for Grades 2–8 only. They represent a higher level of achievement than universal screening cut scores designed to identify students with the most severe learning difficulties who may need intensive intervention. MAP Growth universal screening cut scores for Grades K–8 in ELA and mathematics are available in a separate report (He & Meyer, 2021).

		Proficient Cut Scores by Grade						
Assessm	2	3	4	5	6	7	8	
Science								
05	ST Spring	-	-	-	700	-	-	700
	Fall	_	-	_	199	_	_	208
MAP Growth	Winter	_	_	_	203	_	_	211
	Spring	_	_	_	205	_	_	212

Please note that the results in this report may differ from those found in the NWEA reporting system for individual districts. The typical growth scores from fall to spring or winter to spring used in this report are based on the default instructional weeks most encountered for each term (i.e., Weeks 4, 20, and 32 for fall, winter, and spring, respectively). However, instructional weeks often vary by district, so the cut scores in this report may differ slightly from the MAP Growth score reports that reflect the specific instructional weeks set by partners.

E.2. Assessment Overview

The OST Grades 3–8 ELA and Mathematics test and the OST Grades 5 and 8 Science tests are Ohio's state summative assessments aligned to Ohio's Learning Standards. The standards for science were revised in 2018. As part of the learning standards transition, 2020–2021 was the first year that students were tested on the Ohio's revised learning standards for science. Based on their test scores, students are placed into one of five performance levels: *Limited*, *Basic*, *Proficient*, *Accelerated*, and *Advanced*. The *Proficient* cut score demarks the minimum level of achievement considered to be proficient for accountability purposes. MAP Growth tests are adaptive interim assessments aligned to state-specific content standards and administered in the fall, winter, and spring. Scores are reported on the RIT vertical scale with a range of 100 to 350.

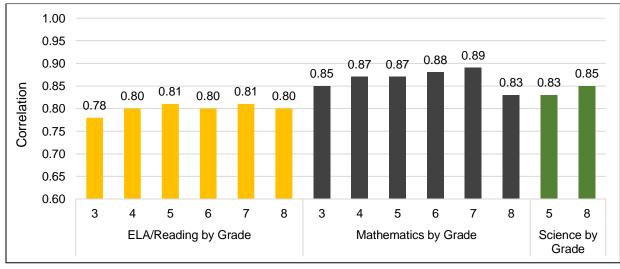
E.3. Linking Methods

The equipercentile linking method was used to identify the spring MAP Growth scores that correspond to the spring OST performance level cut scores. MAP Growth fall and winter cut scores that predict proficiency on the spring OST assessment were then projected using the 2020 NWEA growth norms that provide expected score gains across test administrations (Thum & Kuhfeld, 2020). The Grade 2 cuts were derived based on the cuts for Grade 3 and the 2020 NWEA growth norms.

E.4. Student Sample

Table E.2 presents the number of Ohio students from 33 districts and 272 schools for ELA and mathematics and 15 districts and 44 schools for science who were included in the linking study sample. Only students who took both the MAP Growth and OST assessments in Spring 2017 for ELA and mathematics or Spring 2021 for science were included.

Table E.2. Linking Study Sample


	#Students							
Grade	ELA/Reading	Mathematics	Science					
3	13,746	13,268	-					
4	13,285	13,074	_					
5	13,258	12,609	1,536					
6	12,013	11,351	_					
7	11,191	10,360	_					
8	11,219	8,714	1,764					

The linking study sample is voluntary and can only include student scores from partners who share their data. Also, not all students in a state take MAP Growth. The sample may therefore be different from the general student population in important characteristics. To ensure that the linking study sample represents the state student population in terms of race, sex, and performance level distributions, post-stratification weighting was applied to statistically adjust the sample so it reflects the target population on these variables. As a result, the RIT cuts derived from the study sample can be generalized to any student from the target population. All analyses in this study for Grades 3–8 were conducted based on the weighted sample.

E.5. Test Score Relationships

Correlations between MAP Growth RIT scores and OST scores range from 0.78 to 0.89 across content areas, as shown in Figure E.1. These values indicate a strong relationship among the scores, which is important validity evidence for the claim that MAP Growth scores are good predictors of performance on the OST assessments.

Figure E.1. Correlations between MAP Growth and OST Test Scores

E.6. Accuracy of MAP Growth Classifications

Figure E.2 presents the classification accuracy statistics that show the proportion of students correctly classified by their RIT scores as proficient or not proficient on the OST assessments. For example, the MAP Growth Reading Grade 3 *Proficient* cut score has a 0.83 accuracy rate, meaning it accurately classified student achievement on the state test for 83% of the sample. The results range from 0.79 to 0.88 across content areas, indicating that RIT scores have a high accuracy rate of identifying student proficiency on the OST assessments.

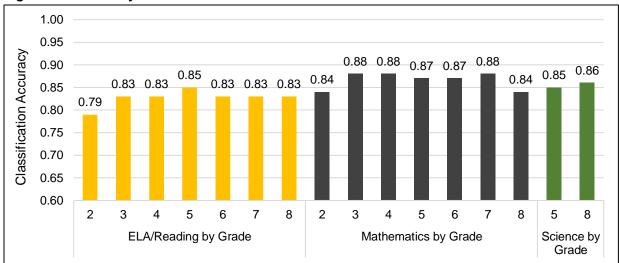


Figure E.2. Accuracy of MAP Growth Classifications

1. Introduction

1.1. Purpose of the Study

NWEA® is committed to providing partners with useful tools to help make inferences about student learning from MAP® Growth™ test scores. One important use of MAP Growth results is to predict a student's performance on the state summative assessment at different times throughout the year. This allows educators and parents to determine if a student is on track in their learning to meet state standards by the end of the year or, given a student's learning profile, is on track to obtain rigorous, realistic growth in their content knowledge and skills.

This document presents results from a linking study conducted by NWEA to statistically connect the scores of Ohio's State Tests (OST) in Grades 3–8 for English language arts (ELA) and mathematics and in Grades 5 and 8 for science with Rasch Unit (RIT) scores from the MAP Growth assessments taken during the Spring 2017 term for ELA and mathematics and Spring 2021 for science. MAP Growth cut scores are also included for Grade 2 so educators can track early learners' progress toward proficiency on the OST assessment by Grade 3. Specifically, this report presents the following results:

- 1. Student sample demographics
- 2. Descriptive statistics of test scores
- 3. MAP Growth cut scores from fall, winter, and spring that correspond to the performance levels on the spring OST assessment
- 4. MAP Growth Reading cut scores that correspond to Ohio's Third Grade Reading Guarantee (TGRG) promotion cuts.
- 5. Classification accuracy statistics to determine the degree to which MAP Growth accurately predicts student proficiency status on the OST tests
- 6. The probability of achieving grade-level proficiency on the OST assessment based on MAP Growth RIT scores from fall, winter, and spring

The linking study has been updated to generate new cut scores for the updated OST Science test. Results from the July 2020 linking study for ELA and mathematics remain the same but are included in this report so all up-to-date OST 3–8 linking study results are in one location.

1.2. Assessment Overview

The OST Grades 3–8 ELA and Mathematics and Grades 5 and 8 Science summative assessments are aligned to Ohio's Learning Standards. A cut score is the minimum score a student must get on a test to be placed in a certain performance level. Each OST assessment has four cut scores that distinguish between the following five performance levels: *Limited*, *Basic*, *Proficient*, *Accelerated*, and *Advanced*. The *Proficient* cut score demarks the minimum level of performance considered to be proficient for accountability purposes.

MAP Growth interim assessments from NWEA are computer adaptive and aligned to state-specific content standards. Scores are reported on the RIT vertical scale with a range of 100 to 350. To aid the interpretation of scores, NWEA conducts norming studies of student and school performance on MAP Growth. Achievement status norms show how well a student performed on MAP Growth compared to students in the norming group. It does this by associating the student's RIT score with a percentile ranking. Growth norms provide expected score gains across test administrations (e.g., the relative evaluation of a student's growth from fall to spring). The most recent norms study was conducted in 2020 (Thum & Kuhfeld, 2020).

2. Methods

2.1. Data Collection

This linking study is based on data from the Spring 2017 administrations of the MAP Growth and OST ELA and Mathematics assessments and the Spring 2021 administrations of the MAP Growth and OST Science assessments. NWEA recruited Ohio districts to participate in the study by sharing their student and score data for the target term. Districts also gave NWEA permission to use their students' MAP Growth scores from the NWEA in-house database. Once state score information was received by NWEA, each student's state testing record was matched to their MAP Growth score based on the student's first and last names, date of birth, student ID, and other available identifying information. Only students who took both the MAP Growth and OST assessments in Spring 2017 for ELA and mathematics and Spring 2021 for science were included in the study sample.

2.2. Post-Stratification Weighting

Post-stratification weights were applied to the calculations to ensure that the linking study sample represented the state's test-taking student population in terms of race, sex, and performance level. These variables were selected because they are known to be correlated with students' academic achievement and are often available in state summative assessment reports. The weighted sample will match the target population as closely as possible on the key demographics and performance characteristics as defined by the state. A raking procedure was used to calculate the post-stratification weights that either compensate for the underrepresentation of certain groups or attenuate the overrepresentation of certain groups. Raking uses iterative procedures to obtain weights that match sample marginal distributions to known population margins. The following steps were taken during this process:

- 1. Calculate marginal distributions of race, sex, and performance level for the sample and population.
- 2. Calculate post-stratification weights with the rake function from the survey package in R (Lumley, 2019).
- 3. Trim the weights that are outside the range of 0.3 to 3.0.
- 4. Apply the weights to the sample before conducting the linking study analyses.

2.3. MAP Growth Cut Scores

MAP Growth cut scores that predict student achievement on the OST assessment are reported for Grades 3–8, as well as for Grade 2 so educators can track early learners' progress toward proficiency on the OST assessment by Grade 3. Percentile ranks based on the 2020 NWEA norms are also provided. These are useful for understanding how students' scores compare to peers nationwide and the relative rigor of a state's performance level designations for its summative assessment.

The equipercentile linking method (Kolen & Brennan, 2004) was used to identify the spring MAP Growth RIT scores for Grades 3–8 that correspond to the spring OST performance level cut scores. The equipercentile linking procedure matches scores on the two scales that have the same percentile rank (i.e., the proportion of tests at or below each score). For example, let x represent a score on Test X (e.g., OST). Its equipercentile equivalent score on Test Y (e.g., MAP Growth), $e_y(x)$, can be obtained through a cumulative-distribution-based linking function defined in Equation 1:

$$e_{\nu}(x) = G^{-1}[P(x)]$$
 (1)

where $e_y(x)$ is the equipercentile equivalent of score x on OST on the scale of MAP Growth, P(x) is the percentile rank of a given score on OST, and G^{-1} is the inverse of the percentile rank function for MAP Growth that indicates the score on MAP Growth corresponding to a given percentile. Polynomial loglinear pre-smoothing was applied to reduce irregularities of the score distributions and equipercentile linking curve.

The MAP Growth conditional growth norms provide students' expected score gains across terms, such as growth from fall to spring within the same grade or from spring of a lower grade to spring of the adjacent higher grade. This information was used to calculate the fall and winter cut scores for Grades 3–8. Equation 2 was used to determine the previous term's or grade's MAP Growth score needed to reach the spring cut score, considering the expected growth associated with the previous RIT score:

$$RIT_{PredSpring} = RIT_{previous} + g$$
 (2)

where:

- *RIT*_{PredSpring} is the predicted MAP Growth spring score.
- $RIT_{previous}$ is the previous term's or grade's RIT score.
- g is the expected growth from the previous RIT (e.g., fall or winter) to the spring RIT score.

The MAP Growth conditional growth norms were also used to calculate the fall, winter, and spring cuts for Grade 2. Ohio students do not begin taking the OST ELA and Mathematics assessment until Grade 3. Thus, cut scores for Grade 2 were interpolated by obtaining longitudinal data for the Grade 3 cohort. For each Grade 3 student in the study sample for ELA and mathematics, their MAP Growth data from the prior year when they were in Grade 2 were obtained. In this way, the data came from the same cohort of students beginning when they were in Grade 2 and continuing through Grade 3. To derive the spring cut scores for Grade 2, the growth score from spring of one year to the next was used (i.e., the growth score from spring Grade 2 to spring Grade 3). The calculation of fall and winter cuts for Grade 2 followed the same process as above for Grades 3–8. For example, the growth score from fall to spring in Grade 2 was used to calculate the fall cuts for Grade 2.

2.4. Classification Accuracy

The degree to which MAP Growth predicts student proficiency status on the OST assessments can be described using classification accuracy statistics based on the MAP Growth spring RIT cut scores. The results show the proportion of students correctly classified by their RIT scores as proficient or not proficient on the OST assessment. A summary of how well the interpolated Grade 2 cuts predict Grade 3 proficiency status is also reported in the classification accuracy statistics. Table 2.1 describes the classification accuracy statistics provided in this report (Pommerich et al., 2004).

Table 2.1. Description of Classification Accuracy Summary Statistics

Statistic	Description*	Interpretation
Overall Classification Accuracy Rate	(TP + TN) / (total sample size)	Proportion of the study sample whose proficiency classification on the state test was correctly predicted by MAP Growth cut scores
False Negative (FN) Rate	FN / (FN + TP)	Proportion of not-proficient students identified by MAP Growth in those observed as proficient on the state test
False Positive (FP) Rate	FP / (FP + TN)	Proportion of proficient students identified by MAP Growth in those observed as not proficient on the state test
Sensitivity	TP / (TP + FN)	Proportion of proficient students identified by MAP Growth in those observed as such on the state test
Specificity	TN / (TN + FP)	Proportion of not-proficient students identified by MAP Growth in those observed as such on the state test
Precision	TP / (TP + FP)	Proportion of observed proficient students on the state test in those identified as such by the MAP Growth test
Area Under the Curve (AUC)	Area under the receiver operating characteristics (ROC) curve	How well MAP Growth cut scores separate the study sample into proficiency categories that match those from the state test cut scores. An AUC at or above 0.80 is considered "good" accuracy.

^{*}FP = false positives. FN = false negatives. TP = true positives. TN = true negatives.

2.5. Proficiency Projections

In addition to calculating the MAP Growth fall and winter cut scores (and the Grade 2 cut scores), the MAP Growth conditional growth norms data were also used to calculate the probability of reaching proficiency on the OST assessments based on a student's RIT scores from fall, winter, and spring. Equation 3 was used to calculate the probability of a student achieving *Proficient* performance on the OST test based on their fall or winter RIT score:

$$Pr(Achieving\ Proficient\ in\ spring\ |\ starting\ RIT) = \Phi\left(\frac{RIT_{previous} + g - RIT_{SpringCut}}{SD}\right)$$
 (3)

where:

- Φ is the standard normal cumulative distribution function.
- RIT_{previous} is the student's RIT score in fall or winter (or in spring of Grade 2).
- g is the expected growth from the previous RIT (e.g., fall or winter) to the spring RIT.
- *RIT*_{SpringCut} is the MAP Growth *Proficient* cut score for spring. For Grade 2, this is the Grade 3 cut score for spring.
- SD is the conditional standard deviation of the expected growth, g.

Equation 4 was used to estimate the probability of a student achieving *Proficient* performance on the OST test based on their spring RIT score (RIT_{Spring}):

$$Pr(Achieving\ Proficient\ in\ spring\ |\ spring\ RIT) = \Phi\left(\frac{RIT_{Spring} - RIT_{SpringCut}}{SE}\right)$$
 (4)

where SE is the standard error of measurement for MAP Growth.

3. Results

3.1. Study Sample

Only students who took both the MAP Growth and OST assessments in either Spring 2017 for ELA and mathematics or Spring 2021 for science were included in the study sample. Data used in this study were collected from 33 districts and 272 schools for ELA and mathematics and 15 districts and 44 schools for science in Ohio. Table 3.1 presents the demographic distributions of race, sex, and performance level in the original unweighted study sample. Table 3.2 presents the distributions of the target population of students who took the Spring 2017 or Spring 2021 OST tests. Since the original study sample is different from the target OST population, post-stratification weights were applied to the linking study sample to improve its representativeness. Table 3.3 presents the demographic distributions of the sample after weighting, which are almost identical to the OST student population distributions. The analyses in this study were conducted using the weighted sample.

Table 3.1. Linking Study Sample Demographics (Unweighted)

	Linkin	g Study Sai	nple (Unwe	eighted)			
			C	%Students	by Grade		
Demog	graphic Subgroup	3	4	5	6	7	8
ELA/Reading							
	Total N	13,746	13,419	13,127	12,013	11,191	11,219
	Asian	5.2	4.8	4.9	4.9	3.5	3.3
	Black	27.1	25.9	25.9	25.0	27.2	28.2
Race*	Hispanic	6.5	6.3	6.1	5.8	5.7	5.0
	Other	6.0	6.9	6.7	7.4	8.0	8.0
	White	55.3	56.2	56.4	57.0	55.7	55.4
Cav	Female	49.1	48.4	48.9	tudents by Grade 5 6 7 3,127	49.5	
Sex	Male	50.9	51.6	51.1	50.6	50.6	50.5
	Limited	22.7	22.5	20.4	19.5	22.1	37.0
D. (Basic	17.8	20.1	16.1	24.3	24.9	18.1
Performance Level	Proficient	18.0	19.0	18.9	22.2	22.7	24.7
Level	Accelerated	17.3	21.0	18.8	20.1	17.0	12.7
	Advanced	24.1	17.4	25.9	13.8	13.2	7.6
Mathematics							
	Total N	13,268	12,945	12,609	11,351	10,360	8,628
	Asian	5.3	4.8	4.9	4.8	3.2	2.7
	Black	26.7	25.4	25.6	24.7	27.8	32.6
Race*	Hispanic	6.5	6.2	6.2	5.9	6.0	5.7
	Other	6.0	6.9	6.7	7.4	7.8	8.9
	White	55.6	56.8	56.6	57.2	55.3	50.2
Sex	Female	49.3	48.6	49.0	49.6	49.8	48.8
Sex	Male	50.7	51.4	51.0	50.4	50.2	51.2
	Limited	21.2	23.0	32.1	25.7	34.8	41.7
	Basic	11.6	8.1	9.8	17.5	15.7	11.5
Performance Level	Proficient	19.8	17.8	22.5	23.9	19.5	30.8
LOVEI	Accelerated	21.8	22.7	16.6	13.7	18.9	10.7
	Advanced	25.6	28.4	19.0	19.2	11.2	5.3

	Linking Study Sample (Unweighted)								
			9/	6Students I	by Grade				
Demog	graphic Subgroup	3	4	5	6	7	8		
Science									
	Total N	ı	_	1,536	-	_	1,764		
	Asian	-	_	0.1	-	_	1.8		
	Black/African American	_	_	28.0	_	_	22.3		
Race*	Hispanic	_	_	8.9	_	_	5.4		
Race	Multi-Race	_	-	7.4	_	_	5.7		
	Other	_	-	0.2	_	_	0.5		
	White	_	_	55.4	_	_	64.3		
Cov	Female	_	-	49.3	_	_	52.3		
Sex	Male	_	_	50.7	_	_	47.7		
	Limited	_	_	31.3	_	_	23.9		
	Basic	_	_	23.7	_	_	21.9		
Performance Level	Proficient	_	_	14.7	_	_	17.7		
revei	Accelerated	_	_	15.6	_	_	25.4		
	Advanced	_	_	14.6	_	_	11.1		

^{*}The race categories reflect the OST performance reports from each testing term. As such, the categories for science based on Spring 2021 data differ slightly from those reported for ELA and mathematics based on Spring 2017 data.

Table 3.2. OST Student Population Demographics

		OST 3-8	Population	า			
				%Students	s by Grade		
Demog	graphic Subgroup	3	4	5	6	7	8
ELA (Spring 2	2017)						
	Total N	128,552	127,322	126,308	123,618	126,974	125,992
	Asian	2.3	2.4	2.3	2.4	2.3	2.2
	Black	17.5	16.8	16.5	15.4	15.4	15.3
Race*	Hispanic	4.2	3.9	3.9	3.7	3.5	3.4
	Other	7.4	7.1	6.7	6.5	6.6	6.3
	White	68.6	69.9	70.6	72.0	72.2	72.7
Cov	Female	49.0	49.1	49.0	49.1	48.9	48.6
Sex	Male	51.0	50.9	51.0	50.9	51.1	51.4
	Limited	19.0	17.0	16.0	15.0	16.0	30.0
5 (Basic	18.0	20.0	17.0	25.0	25.0	20.0
Performance Level	Proficient	19.0	21.0	20.0	25.0	25.0	28.0
Lovoi	Accelerated	19.0	23.0	22.0	22.0	20.0	14.0
	Advanced	25.0	18.0	26.0	13.0	14.0	8.0
Mathematics	(Spring 2017)						
	Total N	129,447	126,885	125,433	121,929	122,788	97,782
	Asian	2.3	2.3	2.2	2.3	2.1	1.8
	Black	17.5	16.8	16.6	15.5	15.8	16.9
Race*	Hispanic	4.1	3.9	3.9	3.8	3.5	3.9
	Other	7.4	7.1	6.7	6.5	6.6	6.7
	White	68.7	69.9	70.5	72.0	71.9	70.7

		OST 3–8 F	Population	า			
				%Students	by Grade		
Demoç	graphic Subgroup	3	4	5	6	7	8
Sex	Female	49.0	49.1	49.1	49.2	48.9	48.0
	Male	51.0	50.9	50.9	50.8	51.1	52.0
	Limited	18.0	19.0	28.0	21.0	28.0	33.0
Denfermen	Basic	11.0	9.0	11.0	18.0	16.0	12.0
Performance Level	Proficient	21.0	20.0	26.0	26.0	21.0	36.0
20701	Accelerated	24.0	25.0	18.0	16.0	22.0	13.0
	Advanced	26.0	28.0	17.0	19.0	13.0	7.0
Science (Spri	ng 2021)						
	Total N	ı	-	113,019	_	-	119,501
	Asian	-	-	2.6	_	_	2.5
	Black/African American	_	_	16.0	_	_	15.2
Race*	Hispanic	_	_	4.2	_	_	4.1
Nace	Multi-Race	_	_	8.2	_	_	7.4
	Other	_	_	0.2	_	_	0.2
	White	ı	_	68.9	_	_	70.5
Sex	Female	-	-	48.7	_	_	48.8
Jex	Male	ı	_	51.2	_	_	51.1
	Limited	-	-	19.0	-	_	19.0
D (Basic	_	_	23.0	_	_	21.0
Performance Level	Proficient	_	_	16.0	_	_	20.0
20101	Accelerated	_	_	19.0	_	_	27.0
	Advanced	_	_	23.0	_	_	13.0

^{*}The race categories reflect the OST performance reports from each testing term. As such, the categories for science based on Spring 2021 data differ slightly from those reported for ELA and mathematics based on Spring 2017 data.

Table 3.3. Linking Study Sample Demographics (Weighted)

	Linking Study Sample (Weighted)								
				%Students	by Grade				
Demog	graphic Subgroup	3	4	5	6	7	8		
ELA/Reading									
	Total N	13,746	13,285	13,258	12,013	11,191	11,219		
	Asian	2.3	2.4	2.3	2.4	2.3	2.2		
	Black	17.5	16.8	16.5	15.4	15.4	15.3		
Race*	Hispanic	4.2	3.9	3.9	3.7	3.5	3.4		
	Other	7.4	7.1	6.7	6.5	6.6	6.3		
	White	68.6	69.8	70.6	72.0	72.2	72.8		
Sex	Female	49.0	49.1	49.0	49.1	48.9	48.6		
Jex	Male	51.0	50.9	51.0	50.9	51.1	51.4		
	Limited	19.0	17.2	15.8	15.0	16.0	30.0		
	Basic	18.0	20.2	16.8	25.0	25.0	20.0		
Performance Level	Proficient	19.0	21.2	19.8	25.0	25.0	28.0		
20701	Accelerated	19.0	23.2	21.8	22.0	20.0	14.0		
-	Advanced	25.0	18.2	25.7	13.0	14.0	8.0		

	Linki	ng Study S	ample (We	ighted)			
	%Students by Grade						
Demog	graphic Subgroup	3	4	5	6	7	8
Mathematics							
	Total N	13,268	13,074	12,609	11,351	10,360	8,714
	Asian	2.3	2.3	2.2	2.3	2.1	1.8
	Black	17.5	16.8	16.6	15.5	15.8	16.9
Race*	Hispanic	4.1	3.9	3.9	3.8	3.5	3.9
	Other	7.4	7.1	6.7	6.5	6.6	6.7
Total N	69.9	70.6	71.9	72.0	70.7		
0	Female	49.0	49.1	49.1	49.2	48.9	48.0
Sex	Male	51.0	50.9	50.9	50.8	51.1	52.0
	Limited	18.0	18.8	28.0	21.0	28.0	32.7
_	Basic	11.0	8.9	11.0	18.0	16.0	11.9
	Proficient	21.0	19.8	26.0	26.0	21.0	35.6
Levei	Accelerated	24.0	24.8	18.0	16.0	22.0	12.9
	Advanced	26.0	27.7	17.0	19.0	13.0	6.9
Science							
	Total N	_	_	1,536	_	_	1,764
	Asian	_	_	2.6	_	_	2.5
	Black/African American	_	_	16.0	_	_	15.2
D +	Hispanic	_	_	4.1	_	_	4.1
Race"	Multi-Race	_	_	8.2	_	_	7.4
	Other	_	_	0.2	_	_	0.2
	White	_	_	69.0	_	_	70.6
-	Female	_	_	48.8	_	_	48.8
Sex	Male	_	_	51.2	_	_	51.2
	Limited	_	_	19.0	_	_	19.0
	Basic	_	_	23.0	_	_	21.0
	Proficient	_	_	16.0	_	_	20.0
Levei	Accelerated	_	_	19.0	_	_	27.0
	Advanced	_		23.0	_	_	13.0

^{*}The race categories reflect the OST performance reports from each testing term. As such, the categories for science based on Spring 2021 data differ slightly from those reported for ELA and mathematics based on Spring 2017 data.

3.2. Descriptive Statistics

Table 3.4 presents descriptive statistics of the MAP Growth and OST test scores from Spring 2017 for ELA and mathematics and Spring 2021 for science, including the correlation coefficient (*r*) between them. The correlation coefficients between the scores range from 0.78 to 0.81 for ELA/reading, 0.83 to 0.89 for mathematics, and 0.83 to 0.85 for science. These values indicate a strong relationship among the scores, which is important validity evidence for the claim that MAP Growth scores are good predictors of performance on the OST assessments.

Table 3.4. Descriptive Statistics of Test Scores

		OST*					MAP G	owth*	
N	r	Mean	SD	Min.	Max.	Mean	SD	Min.	Max.
ling									
13,746	0.78	715.0	51.1	545	863	201.5	15.3	135	245
13,285	0.80	712.6	44.6	549	846	208.1	15.5	139	255
13,258	0.81	718.5	50.9	552	848	214.0	15.3	139	255
12,013	0.80	706.8	40.0	555	851	217.7	14.5	143	269
11,191	0.81	706.5	39.2	568	833	220.3	15.4	141	262
11,219	0.80	697.5	33.4	586	805	223.2	15.6	139	267
tics									
13,268	0.85	722.9	44.2	587	818	203.3	13.8	134	263
13,074	0.87	727.7	50.1	605	835	213.3	15.5	130	267
12,609	0.87	710.5	38.3	624	804	222.0	17.5	135	284
11,351	0.88	709.9	35.5	616	790	225.5	16.5	141	271
10,360	0.89	706.7	41.3	605	806	229.4	17.8	130	288
8,714	0.83	701.8	27.3	633	774	229.9	17.6	137	279
1,536	0.83	709.9	49.4	568	845	206.7	13.5	154	244
1,764	0.85	713.9	45.3	588	855	215.0	15.0	156	255
	iing 13,746 13,285 13,258 12,013 11,191 11,219 ics 13,268 13,074 12,609 11,351 10,360 8,714	13,746 0.78 13,285 0.80 13,258 0.81 12,013 0.80 11,191 0.81 11,219 0.80	13,746 0.78 715.0 13,285 0.80 712.6 13,258 0.81 718.5 12,013 0.80 706.8 11,191 0.81 706.5 11,219 0.80 697.5	13,746 0.78 715.0 51.1 13,285 0.80 712.6 44.6 13,258 0.81 718.5 50.9 12,013 0.80 706.8 40.0 11,191 0.81 706.5 39.2 11,219 0.80 697.5 33.4 ics	13,746	13,746	13,746	13,746	13,746

^{*}SD = standard deviation. Min. = minimum. Max. = maximum.

3.3. MAP Growth Cut Scores

Table 3.5, Table 3.6, and Table 3.7 present the OST scale score ranges and the corresponding MAP Growth RIT cut scores and percentile ranges by content area and grade. Bolded numbers indicate the cut scores considered to be at least proficient for accountability purposes. These tables can be used to predict a student's likely performance level on the OST spring assessment when MAP Growth is taken in the fall, winter, or spring. For example, a Grade 3 student who obtained a MAP Growth Reading RIT score of 189 in the fall is likely to achieve *Proficient* performance on the OST ELA test. A Grade 3 student who obtained a MAP Growth Reading RIT score of 199 in the spring is also likely to achieve *Proficient* performance on the OST assessment. The spring cut score is higher than the fall cut score because growth is expected between fall and spring as students receive more instruction during the school year.

Within this report, the cut scores for fall and winter are derived from the spring cuts and the typical growth scores from fall-to-spring or winter-to-spring. The typical growth scores are based on the default instructional weeks most encountered for each term (Weeks 4, 20, and 32 for fall, winter, and spring, respectively). Since instructional weeks often vary by district, the cut scores in this report may differ slightly from the MAP Growth score reports that reflect instructional weeks set by partners. If the actual instructional weeks deviate substantially from the default ones, a student's expected performance level could be different from the projections presented in this report. Partners are therefore encouraged to use the projected performance level in students' score reports since they reflect the specific instructional weeks set by partners.

Table 3.5. MAP Growth Cut Scores—ELA/Reading

	10.010 0.10	. MAP Grow			OST EL	Α				
Grade	Lir	mited	В	asic		ficient	Acce	lerated	Adv	anced
3	545	5–671	672	2–699	700) –724	725	5–751	752	2–863
4		9–673		-699) –724		5–752		3–846
5		2–668		-699	700 –724		725–754		755	5–848
6		5–667	668	699	700) –724	725–750		751	-851
7	568	3–669	670	-699	700) –724	725	5–748	749	- 833
8	586	6–681	682	2–699	700) –724	725	5–743	744	⊢ 805
				MA	P Growth R	eading				
	Lir	Limited Basic				ficient	Acce	lerated	Adv	anced
Grade	RIT	Percentile	RIT	Percentile	RIT	Percentile	RIT	Percentile	RIT	Percentile
Fall										
2	100–163	1–28	164–174	29–56	175 –183	57–77	184–192	78–90	193–350	91–99
3	100–178	1–31	179–188	32–55	189 –196	56–72	197–203	73–84	204–350	85–99
4	100–185	1–25	186–197	26–52	198 –206	53–72	207–214	73–85	215–350	86–99
5	100–192	1–23	193–202	24–45	203 –210	46–64	211–220	65–83	221–350	84–99
6	100–197	1–22	198–210	23–51	211 –219	52–71	220–228	72–86	229–350	87–99
7	100–202	1–24	203–214	25–51	215 –224	52–73	225–233	74–87	234–350	88–99
8	100–213	1–40	214–221	41–58	222 –232	59–80	233–240	81–90	241–350	91–99
Winter										
2	100–172	1–28	173–183	29–56	184 –191	57–75	192–199	76–88	200–350	89–99
3	100–186	1–32	187–195	33–54	196 –202	55–70	203–208	71–82	209–350	83–99
4	100–192	1–27	193–203	28–53	204 –211	54–71	212–218	72–84	219–350	85–99
5	100–198	1–25	199–207	26–46	208 –214	47–63	215–223	64–82	224–350	83–99
6	100–202	1–24	203–213	25–49	214 –222	50–71	223–230	72–85	231–350	86–99
7	100–205	1–24	206–217	25–51	218 –226	52–72	227–234	73–86	235–350	87–99
8	100–216	1–41	217–223	42–57	224 –233	58–78	234–241	79–89	242–350	90–99
Spring	1									
2	100–177	1–30	178–187	31–55	188 –195	56–74	196–203	75–87	204–350	88–99
3	100–190	1–34	191–198	35–54	199 –205	55–70	206–211	71–81	212–350	82–99
4	100–195	1–28	196–205	29–52	206 –213	53–70	214–220	71–83	221–350	84–99
5	100–200	1–26	201–209	27–47	210 –216	48–64	217–224	65–80	225–350	81–99
6	100–204	1–25	205–215	26–51	216 –223	52–70	224–231	71–84	232–350	85–99
7	100–207	1–25	208–218	26–51	219 –227	52–71	228–235	72–85	236–350	86–99
8	100–217	1–40	218–224	41–57	225 –234	58–78	235–242	79–89	243–350	90–99

Table 3.6. MAP Growth Cut Scores—Mathematics

				0	ST Mathem	atics				
Grade	Lir	nited	В	asic	Pro	ficient	Acce	lerated	Adv	anced
3	587	' –682	683	3–699	700) - 724	725	5–752	753	—————————————————————————————————————
4	605	5–685	686	699	700	-724	725	- 758		- 835
5	624	l–686	687	7 –699	700	– 724	725	- 748	749	-804
6	616	681	682	2–699	700 –724		725–743		744	- 790
7	605	5–683	684	I–699	700	– 724	725	- 754	755	- 806
8	633	8–689	690–699		700	– 724	725	- 743	744	-774
				MAP	Growth Mat	hematics				
	Limited		В	asic	Pro	ficient	Acce	lerated	Adv	anced
Grade	RIT	Percentile	RIT	Percentile	RIT	Percentile	RIT	Percentile	RIT	Percentile
Fall										
2	100–164	1–21	165–169	22–34	170 –178	35–61	179–187	62–83	188–350	84–99
3	100–178	1–23	179–183	24–36	184 –191	37–59	192–199	60–79	200–350	80–99
4	100–190	1–27	191–194	28–37	195 –201	38–56	202–211	57–80	212–350	81–99
5	100–202	1–33	203–208	34–49	209 –218	50-73	219–227	74–88	228–350	89–99
6	100–205	1–28	206–214	29–50	215 –224	51–73	225-231	74–85	232–350	86–99
7	100–215	1–39	216–220	40–51	221 –230	52-72	231–240	73–87	241–350	88–99
8	100–218	1–37	219–224	38–49	225 –238	50-76	239–248	77–89	249–350	90–99
Winter										
2	100–173	1–21	174–178	22–34	179 –187	35–61	188–195	62–81	196–350	82–99
3	100–186	1–24	187–191	25–37	192 –198	38–57	199–206	58–78	207–350	79–99
4	100–197	1–28	198–201	29–38	202 –208	39–57	209–218	58-80	219–350	81–99
5	100–208	1–35	209–214	36–50	215 –224	51–73	225-233	74–88	234–350	89–99
6	100–210	1–29	211–219	30–50	220 –229	51–72	230-236	73–84	237–350	85–99
7	100–218	1–38	219–224	39–51	225 –234	52-72	235-244	73–87	245–350	88–99
8	100–221	1–37	222–227	38–49	228 –241	50–75	242-251	76–88	252–350	89–99
Spring										
2	100–179	1–23	180–184	24–36	185 –192	37–60	193–200	61–80	201–350	81–99
3	100–191	1–25	192–196	26–38	197 –203	39–57	204–211	58–77	212–350	78–99
4	100–201	1–28	202–205	29–38	206 –212	39–55	213–222	56–78	223–350	79–99
5	100–212	1–36	213–218	37–50	219 –228	51–72	229–237	73–87	238–350	88–99
6	100–213	1–30	214–222	31–49	223 –232	50–71	233–239	72–83	240–350	84–99
7	100–221	1–39	222–227	40–52	228 –237	53–72	238–247	73–86	248–350	87–99
8	100–223	1–37	224–229	38–48	230 –243	49–74	244–253	75–87	254–350	88–99
	1		ı		1				1	

Table 3.7. MAP Growth Cut Scores—Science

					OST Scien	ice				
Grade	Lin	nited	В	asic	Pro	ficient	Acce	lerated	Adv	anced
5	559	9–663	664	l–699	700 –724		725–752		753–845	
8	575	5–673	674	l–699	700	-724	725	- 765	766	- 868
				MA	P Growth S	cience				
	Limited Basic			Pro	ficient	Acce	lerated	Adv	anced	
Grade	RIT	Percentile	RIT Percentile		RIT	Percentile	RIT	Percentile	RIT	Percentile
Fall										
5	100–186	1–12	187–198	13–45	199 –206	46–71	207–213	72–87	214–350	88–99
8	100–196	1–16	197–207	17–44	208 –216	45–70	217–228	71–92	229–350	93–99
Winter										
5	100–191	1–14	192–202	15–45	203 –210	46–71	211–216	72–85	217–350	86–99
8	100–200	1–18	201–210	19–45	211 –218	46–68	219–229	69–90	230–350	91–99
Spring										
5	100–194	1–17	195–204	18–45	205 –211	46–67	212–217	68–83	218–350	84–99
8	100–202	1–21	203–211	22–45	212 –219	46–67	220–230	68–89	231–350	90–99

3.4. Third Grade Reading Guarantee

The purpose of Ohio's Third Grade Reading Guarantee (TGRG) program is to identify K–3 students who are behind in reading, allowing schools to provide additional support to help students achieve reading success by the end of Grade 3. The TGRG promotion score on the OST ELA assessment for the 2021–2022 school year was 683, but this was updated in July 2022 when Ohio's State Board of Education voted to raise the TGRG promotion score to 685. Any student who scores 47 or higher on the reading subscore will also be eligible for promotion at the end of the year, even if the student scores below 685 on the OST ELA test.² Table 3.8 presents the MAP Growth Reading RIT cut scores corresponding to the TGRG promotion cuts, including the MAP Growth classification accuracy results based on the data collected in Spring 2017.

Table 3.8. MAP Growth Reading Grade 3 Cut Scores for Ohio's TGRG Program

	OST Cut	MAP	Growth Cut	Class.						
Grade	Score	RIT	Percentile	Accuracy						
OST ELA										
3	685	195	45	0.84						
OST Reading										
3	47	195	45	0.85						

Given the promotion cuts may change in a given year, Table 3.9 and Table 3.10 provide additional RIT scores corresponding to the OST ELA and Reading scores below and above the current promotion cuts to extend the range of cut scores to cover all possible future OST promotion cuts.

² https://education.ohio.gov/Topics/Learning-in-Ohio/Literacy/Third-Grade-Reading-Guarantee

Table 3.9. MAP Growth Reading Grade 3 Cut Scores for Ohio's TGRG Program Extended Above and Below the Current Promotion Cuts—OST ELA

	MA	P Growth
OST ELA	RIT	Percentile
672	191	35
673	191	35
674	191	35
675	192	38
676	192	38
677	192	38
678	193	40
679	193	40
680	193	40
681	194	42
682	194	42
683	194	42
684	195	45
685	195	45
686	195	45
687	195	45
688	196	47
689	196	47
690	196	47
691	197	50
692	197	50
693	197	50
694	197	50
695	198	52
696	198	52
697	198	52
698	199	55
699	199	55
700	199	55

^{*}The OST ELA promotion cut as of July 2022 for the TGRG program is 685, as shown in bold.

Table 3.10. MAP Growth Reading Grade 3 Cut Scores for Ohio's TGRG Program Extended Above and Below the Current Promotion Cuts—OST Reading

	MA	P Growth
OST Reading	RIT	Percentile
43	189	31
44	191	35
45	192	38
46	194	42
47	195	45
48	197	50
49	198	52
50	199	55
51	200	57
52	202	62
53	203	64
54	204	66
55	205	69
56	207	73

^{*}The OST Reading promotion cut as of July 2022 for the TGRG program is 47, as shown in bold.

3.5. Classification Accuracy

Table 3.11 presents the classification accuracy summary statistics, including the overall classification accuracy rate. These results indicate how well MAP Growth spring RIT scores predict proficiency on the OST assessments, providing insight into the predictive validity of MAP Growth. The overall classification accuracy rate ranges from 0.79 to 0.85 for ELA/reading, 0.84 to 0.88 for mathematics, and 0.85 to 0.86 for science. These values suggest that the RIT cut scores are good at classifying students as proficient or not proficient on the OST assessment. For Grade 2, the classification accuracy rate refers to how well the MAP Growth cuts can predict students' proficiency status on OST in Grade 3.

Although the results show that MAP Growth scores can be used to predict student proficiency on the OST assessments with relatively high accuracy, there is a notable limitation to how these results should be used and interpreted. The OST and MAP Growth assessments are designed for different purposes and measure slightly different constructs even within the same content area. Therefore, scores on the two tests cannot be assumed to be interchangeable. MAP Growth may not be used as a substitute for the state tests and vice versa.

Table 3.11. Classification Accuracy Results

		Cut Scor	е	Class.	Ra	te*				
Grade	N	MAP Growth	OST	Accuracy*	FP	FN	Sensitivity	Specificity	Precision	AUC*
ELA/Rea	ding									
2	11,165	188	700	0.79	0.16	0.24	0.76	0.84	0.89	0.88
3	13,746	199	700	0.83	0.27	0.12	0.88	0.73	0.85	0.90
4	13,285	206	700	0.83	0.22	0.14	0.86	0.78	0.87	0.91
5	13,258	210	700	0.85	0.22	0.12	0.88	0.78	0.89	0.92
6	12,013	216	700	0.83	0.24	0.13	0.87	0.76	0.84	0.90
7	11,191	219	700	0.83	0.23	0.14	0.86	0.77	0.84	0.91
8	11,219	225	700	0.83	0.19	0.15	0.85	0.81	0.82	0.91
Mathema	atics									
2	10,773	185	700	0.84	0.31	0.10	0.90	0.69	0.87	0.88
3	13,268	197	700	0.88	0.23	0.07	0.93	0.77	0.91	0.94
4	13,074	206	700	0.88	0.20	0.09	0.91	0.80	0.92	0.95
5	12,609	219	700	0.87	0.16	0.11	0.89	0.84	0.90	0.95
6	11,351	223	700	0.87	0.16	0.11	0.89	0.84	0.90	0.95
7	10,360	228	700	0.88	0.16	0.09	0.91	0.84	0.88	0.95
8	8,714	230	700	0.84	0.17	0.15	0.85	0.83	0.86	0.92
Science										
5	1,536	205	700	0.85	0.19	0.12	0.88	0.81	0.86	0.93
8	1,764	212	700	0.86	0.21	0.09	0.91	0.79	0.87	0.93

^{*}Class. Accuracy = overall classification accuracy rate. FP = false positives. FN = false negatives. AUC = area under the ROC curve.

3.6. Proficiency Projections

Table 3.12, Table 3.13, and Table 3.14 present the estimated probability of achieving *Proficient* performance on the OST assessment based on RIT scores from fall, winter, or spring. "Prob." indicates the probability of obtaining proficiency status on the OST test in the spring. For example, a Grade 3 student who obtained a MAP Growth Reading score of 201 in the fall has a 93% chance of reaching *Proficient* or higher on the OST ELA assessment in the spring.

Table 3.12. Proficiency Projections based on RIT Scores—ELA/Reading

						Reading					
				Fall			Winter			Spring	
	<u> </u>		F-II	Projected F	Proficiency		Projected P	roficiency		Projected P	roficiency
Grade	Start %ile	Spring Cut	Fall RIT	Proficient	Prob.	Winter RIT	Proficient	Prob.	Spring RIT	Proficient	Prob.
	5	188	147	No	<0.01	156	No	<0.01	160	No	<0.01
	10	188	153	No	<0.01	162	No	<0.01	166	No	<0.01
	15	188	157	No	0.02	166	No	<0.01	170	No	<0.01
	20	188	160	No	0.04	169	No	<0.01	173	No	<0.01
	25	188	162	No	0.06	171	No	0.01	175	No	<0.01
	30	188	164	No	0.09	173	No	0.03	177	No	<0.01
	35	188	166	No	0.15	175	No	0.07	180	No	0.01
	40	188	168	No	0.21	177	No	0.13	182	No	0.03
	45	188	170	No	0.25	179	No	0.17	184	No	0.11
2	50	188	172	No	0.35	181	No	0.29	186	No	0.27
	55	188	174	No	0.45	183	No	0.43	188	Yes	0.50
	60	188	176	Yes	0.55	185	Yes	0.57	189	Yes	0.62
	65	188	178	Yes	0.65	187	Yes	0.71	192	Yes	0.89
	70	188	180	Yes	0.70	189	Yes	0.83	194	Yes	0.97
	75	188	183	Yes	0.82	191	Yes	0.90	196	Yes	0.99
	80	188	185	Yes	0.88	194	Yes	0.97	199	Yes	>0.99
	85	188	188	Yes	0.93	197	Yes	0.99	202	Yes	>0.99
	90	188	192	Yes	0.98	200	Yes	>0.99	205	Yes	>0.99
	95	188	197	Yes	0.99	206	Yes	>0.99	211	Yes	>0.99
	5	199	159	No	<0.01	167	No	<0.01	170	No	<0.01
	10	199	165	No	<0.01	173	No	<0.01	176	No	<0.01
	15	199	169	No	0.01	177	No	<0.01	180	No	<0.01
	20	199	173	No	0.03	180	No	<0.01	183	No	<0.01
	25	199	175	No	0.05	183	No	0.01	186	No	<0.01
	30	199	178	No	0.11	185	No	0.03	189	No	<0.01
	35	199	180	No	0.14	188	No	0.09	191	No	0.01
	40	199	182	No	0.21	190	No	0.13	193	No	0.03
	45	199	185	No	0.34	192	No	0.23	195	No	0.11
3	50	199	187	No	0.39	194	No	0.35	197	No	0.27
	55	199	189	Yes	0.50	196	Yes	0.50	199	Yes	0.50
	60	199	191	Yes	0.61	198	Yes	0.65	201	Yes	0.73
	65	199	193	Yes	0.70	200	Yes	0.77	203	Yes	0.89
	70	199	195	Yes	0.75	202	Yes	0.87	206	Yes	0.99
	75	199	198	Yes	0.86	205	Yes	0.95	208	Yes	>0.99
	80	199	201	Yes	0.93	207	Yes	0.98	211	Yes	>0.99
	85	199	204	Yes	0.96	211	Yes	>0.99	214	Yes	>0.99
	90	199	208	Yes	0.99	215	Yes	>0.99	218	Yes	>0.99
	95	199	214	Yes	>0.99	220	Yes	>0.99	224	Yes	>0.99

					ELA/	Reading					
				Fall			Winter			Spring	
	Stort	Spring	Fall	Projected F	Proficiency	Winter	Projected P	roficiency	Spring	Projected P	roficiency
Grade	Start %ile	Spring Cut	RIT	Proficient	Prob.	RIT	Proficient	Prob.	RIT	Proficient	Prob.
	5	206	169	No	<0.01	176	No	<0.01	178	No	<0.01
	10	206	175	No	<0.01	182	No	<0.01	184	No	<0.01
	15	206	179	No	0.01	186	No	<0.01	188	No	<0.01
	20	206	183	No	0.04	189	No	<0.01	191	No	<0.01
	25	206	185	No	0.06	192	No	0.02	194	No	<0.01
	30	206	188	No	0.11	194	No	0.04	196	No	<0.01
	35	206	190	No	0.17	196	No	0.09	199	No	0.01
	40	206	192	No	0.24	198	No	0.17	201	No	0.06
	45	206	195	No	0.34	200	No	0.22	203	No	0.17
4	50	206	197	No	0.44	202	No	0.35	205	No	0.38
	55	206	199	Yes	0.56	205	Yes	0.58	207	Yes	0.62
	60	206	201	Yes	0.66	207	Yes	0.72	209	Yes	0.83
	65	206	203	Yes	0.71	209	Yes	0.83	211	Yes	0.94
	70	206	205	Yes	0.80	211	Yes	0.91	213	Yes	0.99
	75	206	208	Yes	0.89	213	Yes	0.96	216	Yes	>0.99
	80	206	211	Yes	0.94	216	Yes	0.99	219	Yes	>0.99
	85	206	214	Yes	0.97	219	Yes	>0.99	222	Yes	>0.99
	90	206	218	Yes	0.99	223	Yes	>0.99	226	Yes	>0.99
	95	206	224	Yes	>0.99	229	Yes	>0.99	232	Yes	>0.99
	5	210	178	No	<0.01	183	No	<0.01	185	No	<0.01
	10	210	183	No	0.01	189	No	<0.01	191	No	<0.01
	15	210	187	No	0.03	193	No	<0.01	194	No	<0.01
	20	210	191	No	0.06	196	No	0.02	198	No	<0.01
	25	210	193	No	0.11	198	No	0.03	200	No	<0.01
	30	210	196	No	0.2	201	No	0.09	203	No	0.01
	35	210	198	No	0.24	203	No	0.17	205	No	0.06
	40	210	200	No	0.34	205	No	0.28	207	No	0.17
	45	210	202	No	0.44	207	No	0.42	209	No	0.38
5	50	210	204	Yes	0.56	209	Yes	0.58	211	Yes	0.62
	55	210	207	Yes	0.66	211	Yes	0.72	213	Yes	0.83
	60	210	209	Yes	0.76	213	Yes	0.83	215	Yes	0.94
	65	210	211	Yes	0.83	215	Yes	0.91	217	Yes	0.99
	70	210	213	Yes	0.87	217	Yes	0.94	219	Yes	>0.99
	75	210	216	Yes	0.94	220	Yes	0.98	222	Yes	>0.99
	80	210	218	Yes	0.96	222	Yes	0.99	224	Yes	>0.99
	85	210	221	Yes	0.98	226	Yes	>0.99	228	Yes	>0.99
	90	210	225	Yes	>0.99	229	Yes	>0.99	231	Yes	>0.99
	95	210	231	Yes	>0.99	235	Yes	>0.99	237	Yes	>0.99

					ELA/	Reading					
				Fall			Winter			Spring	
	Start	Spring	Fall	Projected F	Proficiency	Winter	Projected P	roficiency	Spring	Projected P	roficiency
Grade	%ile	Cut	RIT	Proficient	Prob.	RIT	Proficient	Prob.	RIT	Proficient	Prob.
	5	216	183	No	<0.01	188	No	<0.01	189	No	<0.01
	10	216	189	No	<0.01	193	No	<0.01	195	No	<0.01
	15	216	193	No	0.01	197	No	<0.01	199	No	<0.01
	20	216	196	No	0.03	200	No	<0.01	202	No	<0.01
	25	216	199	No	0.08	203	No	0.02	205	No	<0.01
	30	216	202	No	0.13	205	No	0.04	207	No	<0.01
	35	216	204	No	0.19	208	No	0.12	209	No	0.01
	40	216	206	No	0.28	210	No	0.22	211	No	0.06
	45	216	208	No	0.33	212	No	0.35	213	No	0.17
6	50	216	210	No	0.44	214	Yes	0.50	215	No	0.38
	55	216	212	Yes	0.56	216	Yes	0.58	217	Yes	0.62
	60	216	214	Yes	0.67	218	Yes	0.72	219	Yes	0.83
	65	216	217	Yes	0.76	220	Yes	0.83	222	Yes	0.97
	70	216	219	Yes	0.84	222	Yes	0.91	224	Yes	0.99
	75	216	221	Yes	0.90	225	Yes	0.97	226	Yes	>0.99
	80	216	224	Yes	0.94	227	Yes	0.99	229	Yes	>0.99
	85	216	227	Yes	0.98	230	Yes	>0.99	232	Yes	>0.99
	90	216	231	Yes	>0.99	234	Yes	>0.99	236	Yes	>0.99
-	95	216	237	Yes	>0.99	240	Yes	>0.99	242	Yes	>0.99
	5	219	187	No	<0.01	190	No	<0.01	191	No	<0.01
	10	219	193	No	<0.01	196	No	<0.01	197	No	<0.01
	15	219	197	No	0.01	200	No	<0.01	201	No	<0.01
	20	219	200	No	0.03	203	No	<0.01	205	No	<0.01
	25	219	203	No	0.06	206	No	0.02	207	No	<0.01
	30	219	206	No	0.12	209	No	0.06	210	No	<0.01
	35	219	208	No	0.19	211	No	0.12	212	No	0.01
	40	219	210	No	0.28	213	No	0.17	214	No	0.06
_	45	219	212	No	0.33	215	No	0.28	216	No	0.17
7	50	219	214	No	0.44	217	No	0.42	218	No	0.38
	55	219	216	Yes	0.56	219	Yes	0.58	220	Yes	0.62
	60	219	218	Yes	0.67	221	Yes	0.72	223	Yes	0.89
	65	219	221	Yes	0.76	223	Yes	0.83	225	Yes	0.97
	70	219	223	Yes	0.84	226	Yes	0.94	227	Yes	0.99
	75	219	225	Yes	0.90	228	Yes	0.97	229	Yes	>0.99
	80	219	228	Yes	0.96	231	Yes	0.99	232	Yes	>0.99
	85	219	231	Yes	0.98	234	Yes	>0.99	235	Yes	>0.99
	90	219	235	Yes	>0.99	238	Yes	>0.99	239	Yes	>0.99
	95	219	241	Yes	>0.99	244	Yes	>0.99	245	Yes	>0.99

					ELA/	Reading					
				Fall			Winter			Spring	
	Start	Spring	Fall	Projected F	Proficiency	Winter	Projected P	roficiency	Spring	Projected P	roficiency
Grade	%ile	Cut	RIT	Proficient	Prob.	RIT	Proficient	Prob.	RIT	Proficient	Prob.
	5	225	190	No	<0.01	193	No	<0.01	194	No	<0.01
	10	225	196	No	<0.01	199	No	<0.01	200	No	<0.01
	15	225	200	No	<0.01	203	No	<0.01	204	No	<0.01
	20	225	204	No	0.01	206	No	<0.01	207	No	<0.01
	25	225	207	No	0.04	209	No	<0.01	210	No	<0.01
	30	225	209	No	0.06	212	No	0.01	213	No	<0.01
	35	225	211	No	0.08	214	No	0.03	215	No	<0.01
	40	225	214	No	0.17	216	No	0.06	217	No	0.01
	45	225	216	No	0.24	218	No	0.13	220	No	0.06
8	50	225	218	No	0.34	221	No	0.28	222	No	0.17
	55	225	220	No	0.39	223	No	0.42	224	No	0.38
	60	225	222	Yes	0.50	225	Yes	0.58	226	Yes	0.62
	65	225	225	Yes	0.66	227	Yes	0.72	228	Yes	0.83
	70	225	227	Yes	0.76	229	Yes	0.83	231	Yes	0.97
	75	225	230	Yes	0.83	232	Yes	0.94	233	Yes	0.99
	80	225	232	Yes	0.89	235	Yes	0.98	236	Yes	>0.99
	85	225	236	Yes	0.96	238	Yes	>0.99	239	Yes	>0.99
	90	225	240	Yes	0.99	242	Yes	>0.99	243	Yes	>0.99
	95	225	246	Yes	>0.99	248	Yes	>0.99	249	Yes	>0.99

Table 3.13. Proficiency Projections based on RIT Scores—Mathematics

Mathematics												
				Fall			Winter	_	Spring			
	_			Projected P	roficiency		Projected P	roficiency	Projected Proficion			
Grade	Start %ile	Spring Cut	Fall RIT	Proficient	Prob.	Winter RIT	Proficient	Prob.	Spring RIT	Proficient	Prob.	
	5	185	154	No	0.01	163	No	<0.01	167	No	<0.01	
	10	185	158	No	0.04	167	No	0.01	172	No	<0.01	
	15	185	162	No	0.14	171	No	0.05	175	No	<0.01	
	20	185	164	No	0.18	173	No	0.10	178	No	0.01	
	25	185	166	No	0.27	175	No	0.20	180	No	0.04	
	30	185	168	No	0.38	177	No	0.34	182	No	0.15	
	35	185	170	Yes	0.50	179	Yes	0.50	184	No	0.37	
	40	185	172	Yes	0.62	181	Yes	0.58	186	Yes	0.63	
	45	185	173	Yes	0.68	182	Yes	0.66	188	Yes	0.85	
2	50	185	175	Yes	0.73	184	Yes	0.80	189	Yes	0.92	
	55	185	177	Yes	0.82	186	Yes	0.90	191	Yes	0.98	
	60	185	178	Yes	0.86	187	Yes	0.93	193	Yes	>0.99	
	65	185	180	Yes	0.92	189	Yes	0.97	195	Yes	>0.99	
	70	185	182	Yes	0.96	191	Yes	0.99	196	Yes	>0.99	
	75	185	184	Yes	0.98	193	Yes	>0.99	198	Yes	>0.99	
	80	185	186	Yes	0.99	195	Yes	>0.99	201	Yes	>0.99	
	85	185	188	Yes	0.99	198	Yes	>0.99	203	Yes	>0.99	
	90	185	192	Yes	>0.99	201	Yes	>0.99	207	Yes	>0.99	
	95	185	196	Yes	>0.99	205	Yes	>0.99	212	Yes	>0.99	
	5	197	166	No	<0.01	174	No	<0.01	178	No	<0.01	
	10	197	171	No	0.03	179	No	<0.01	183	No	<0.01	
	15	197	175	No	0.07	182	No	0.02	186	No	<0.01	
	20	197	177	No	0.13	185	No	0.07	189	No	<0.01	
	25	197	179	No	0.21	187	No	0.14	192	No	0.04	
	30	197	181	No	0.31	189	No	0.26	194	No	0.15	
	35	197	183	No	0.44	191	No	0.42	196	No	0.37	
	40	197	185	Yes	0.56	193	Yes	0.58	198	Yes	0.63	
	45	197	187	Yes	0.69	195	Yes	0.74	199	Yes	0.75	
3	50	197	188	Yes	0.74	196	Yes	0.80	201	Yes	0.92	
	55	197	190	Yes	0.83	198	Yes	0.90	203	Yes	0.98	
	60	197	192	Yes	0.87	200	Yes	0.96	205	Yes	>0.99	
	65	197	194	Yes	0.93	201	Yes	0.97	207	Yes	>0.99	
	70	197	196	Yes	0.96	203	Yes	0.99	208	Yes	>0.99	
	75	197	198	Yes	0.98	205	Yes	>0.99	211	Yes	>0.99	
	80	197	200	Yes	0.99	208	Yes	>0.99	213	Yes	>0.99	
	85	197	202	Yes	>0.99	210	Yes	>0.99	216	Yes	>0.99	
	90	197	206	Yes	>0.99	214	Yes	>0.99	219	Yes	>0.99	
	95	197	211	Yes	>0.99	219	Yes	>0.99	224	Yes	>0.99	

	Mathematics											
				Fall			Winter		Spring			
	01 - 1		F. II	Fall Projected Proficiency			Projected P	roficiency	Projected Proficiency			
Grade	Start %ile	Spring Cut	Fall RIT	Proficient	Prob.	Winter RIT	Proficient	Prob.	Spring RIT	Proficient	Prob.	
	5	206	176	No	<0.01	182	No	<0.01	185	No	<0.01	
	10	206	181	No	0.01	187	No	<0.01	191	No	<0.01	
	15	206	185	No	0.05	191	No	0.02	194	No	<0.01	
	20	206	187	No	0.10	194	No	0.07	197	No	<0.01	
	25	206	190	No	0.21	196	No	0.10	200	No	0.02	
	30	206	192	No	0.32	198	No	0.20	202	No	0.08	
	35	206	194	No	0.44	200	No	0.33	205	No	0.37	
	40	206	196	Yes	0.56	202	Yes	0.50	207	Yes	0.63	
	45	206	198	Yes	0.68	204	Yes	0.67	209	Yes	0.85	
4	50	206	200	Yes	0.79	206	Yes	0.80	211	Yes	0.96	
	55	206	201	Yes	0.83	208	Yes	0.90	212	Yes	0.98	
	60	206	203	Yes	0.90	210	Yes	0.96	214	Yes	>0.99	
	65	206	205	Yes	0.95	212	Yes	0.98	217	Yes	>0.99	
	70	206	207	Yes	0.97	214	Yes	0.99	219	Yes	>0.99	
	75	206	209	Yes	0.99	216	Yes	>0.99	221	Yes	>0.99	
	80	206	212	Yes	>0.99	219	Yes	>0.99	224	Yes	>0.99	
	85	206	214	Yes	>0.99	221	Yes	>0.99	227	Yes	>0.99	
	90	206	218	Yes	>0.99	225	Yes	>0.99	230	Yes	>0.99	
	95	206	223	Yes	>0.99	231	Yes	>0.99	236	Yes	>0.99	
	5	219	184	No	<0.01	189	No	<0.01	191	No	<0.01	
	10	219	190	No	<0.01	194	No	<0.01	197	No	<0.01	
	15	219	193	No	<0.01	198	No	<0.01	201	No	<0.01	
	20	219	196	No	0.02	201	No	<0.01	205	No	<0.01	
	25	219	199	No	0.05	204	No	0.01	207	No	<0.01	
	30	219	201	No	0.11	206	No	0.03	210	No	<0.01	
	35	219	203	No	0.18	209	No	0.10	212	No	0.01	
	40	219	205	No	0.27	211	No	0.20	215	No	0.08	
	45	219	207	No	0.38	213	No	0.34	217	No	0.25	
5	50	219	209	Yes	0.50	215	Yes	0.50	219	Yes	0.50	
	55	219	211	Yes	0.62	217	Yes	0.66	221	Yes	0.75	
	60	219	213	Yes	0.73	219	Yes	0.80	223	Yes	0.92	
	65	219	215	Yes	0.82	221	Yes	0.90	225	Yes	0.98	
	70	219	217	Yes	0.89	223	Yes	0.95	228	Yes	>0.99	
	75	219	219	Yes	0.94	225	Yes	0.98	230	Yes	>0.99	
	80	219	222	Yes	0.98	228	Yes	>0.99	233	Yes	>0.99	
	85	219	225	Yes	0.99	231	Yes	>0.99	236	Yes	>0.99	
	90	219	229	Yes	>0.99	235	Yes	>0.99	240	Yes	>0.99	
	95	219	234	Yes	>0.99	241	Yes	>0.99	246	Yes	>0.99	

	Mathematics											
			_	Fall			Winter		Spring			
	01 - 1	0	Fall Projected Proficiency		NAP . C.	Projected P	roficiency	Projected Proficience				
Grade	Start %ile	Spring Cut	Fall RIT	Proficient	Prob.	Winter RIT	Proficient	Prob.	Spring RIT	Proficient	Prob.	
	5	223	188	No	<0.01	192	No	<0.01	194	No	<0.01	
	10	223	194	No	<0.01	198	No	<0.01	200	No	<0.01	
	15	223	198	No	<0.01	202	No	<0.01	205	No	<0.01	
	20	223	201	No	0.01	205	No	<0.01	208	No	<0.01	
	25	223	204	No	0.04	208	No	0.01	211	No	<0.01	
	30	223	206	No	0.08	211	No	0.03	214	No	<0.01	
	35	223	209	No	0.17	213	No	0.07	216	No	0.01	
	40	223	211	No	0.27	215	No	0.14	218	No	0.04	
	45	223	213	No	0.38	217	No	0.26	221	No	0.25	
6	50	223	215	Yes	0.50	220	Yes	0.50	223	Yes	0.50	
	55	223	217	Yes	0.62	222	Yes	0.66	225	Yes	0.75	
	60	223	219	Yes	0.73	224	Yes	0.80	227	Yes	0.92	
	65	223	221	Yes	0.83	226	Yes	0.90	230	Yes	0.99	
	70	223	223	Yes	0.90	228	Yes	0.96	232	Yes	>0.99	
	75	223	226	Yes	0.96	231	Yes	0.99	235	Yes	>0.99	
	80	223	228	Yes	0.98	234	Yes	>0.99	238	Yes	>0.99	
	85	223	231	Yes	0.99	237	Yes	>0.99	241	Yes	>0.99	
	90	223	235	Yes	>0.99	241	Yes	>0.99	245	Yes	>0.99	
	95	223	241	Yes	>0.99	247	Yes	>0.99	252	Yes	>0.99	
	5	228	192	No	<0.01	194	No	<0.01	196	No	<0.01	
	10	228	198	No	<0.01	201	No	<0.01	203	No	<0.01	
	15	228	202	No	<0.01	205	No	<0.01	207	No	<0.01	
	20	228	206	No	<0.01	209	No	<0.01	211	No	<0.01	
	25	228	208	No	0.01	212	No	<0.01	214	No	<0.01	
	30	228	211	No	0.04	215	No	0.02	217	No	<0.01	
	35	228	213	No	0.07	217	No	0.04	220	No	<0.01	
	40	228	216	No	0.17	219	No	0.10	222	No	0.02	
	45	228	218	No	0.31	222	No	0.26	224	No	0.08	
7	50	228	220	No	0.44	224	No	0.42	227	No	0.37	
	55	228	222	Yes	0.56	226	Yes	0.58	229	Yes	0.63	
	60	228	225	Yes	0.74	229	Yes	0.80	231	Yes	0.85	
	65	228	227	Yes	0.83	231	Yes	0.90	234	Yes	0.98	
	70	228	229	Yes	0.90	233	Yes	0.96	236	Yes	>0.99	
	75	228	232	Yes	0.96	236	Yes	0.99	239	Yes	>0.99	
	80	228	235	Yes	0.99	239	Yes	>0.99	242	Yes	>0.99	
	85	228	238	Yes	>0.99	243	Yes	>0.99	246	Yes	>0.99	
	90	228	243	Yes	>0.99	247	Yes	>0.99	251	Yes	>0.99	
	95	228	249	Yes	>0.99	254	Yes	>0.99	257	Yes	>0.99	

Mathematics Mathematics													
			Fall				Winter			Spring			
	Start	Spring	Fall	Projected P	roficiency	Winter	Projected P	roficiency	Spring	Projected P	roficiency		
Grade	%ile		RIT	Proficient	Prob.	RIT	Proficient	Prob.	RIT	Proficient	Prob.		
	5	230	194	No	<0.01	196	No	<0.01	197	No	<0.01		
	10	230	201	No	<0.01	203	No	<0.01	205	No	<0.01		
	15	230	205	No	<0.01	208	No	<0.01	210	No	<0.01		
	20	230	209	No	0.02	212	No	<0.01	214	No	<0.01		
	25	230	212	No	0.04	215	No	<0.01	217	No	<0.01		
	30	230	215	No	0.10	218	No	0.02	220	No	<0.01		
	35	230	218	No	0.16	221	No	0.07	223	No	0.01		
	40	230	220	No	0.24	223	No	0.15	225	No	0.04		
	45	230	223	No	0.39	226	No	0.34	228	No	0.25		
8	50	230	225	Yes	0.50	228	Yes	0.50	230	Yes	0.50		
	55	230	227	Yes	0.61	231	Yes	0.73	233	Yes	0.85		
	60	230	230	Yes	0.76	233	Yes	0.85	235	Yes	0.96		
	65	230	232	Yes	0.84	236	Yes	0.95	238	Yes	>0.99		
	70	230	235	Yes	0.93	238	Yes	0.98	241	Yes	>0.99		
	75	230	238	Yes	0.97	241	Yes	>0.99	244	Yes	>0.99		
	80	230	241	Yes	0.99	244	Yes	>0.99	247	Yes	>0.99		
	85	230	245	Yes	>0.99	248	Yes	>0.99	251	Yes	>0.99		
	90	230	249	Yes	>0.99	253	Yes	>0.99	256	Yes	>0.99		
	95	230	256	Yes	>0.99	260	Yes	>0.99	263	Yes	>0.99		

Table 3.14 Proficiency Projections based on RIT Scores—Science

Science											
				Fall			Winter			Spring	
	. .		F-II	Projected F	Proficiency		Projected P	roficiency		Brainstad Brafiniana	
Grade	Start %ile	Spring Cut	Fall RIT	Proficient	Prob.	Winter RIT	Proficient	Prob.	Spring RIT	Proficient	Prob.
	5	205	181	No	0.02	185	No	<0.01	186	No	<0.01
	10	205	185	No	0.04	189	No	0.01	191	No	<0.01
	15	205	188	No	0.10	192	No	0.04	194	No	<0.01
	20	205	190	No	0.16	194	No	0.08	196	No	<0.01
	25	205	192	No	0.19	196	No	0.14	198	No	0.02
	30	205	194	No	0.28	198	No	0.18	200	No	0.07
	35	205	196	No	0.39	200	No	0.30	202	No	0.19
	40	205	197	No	0.39	201	No	0.36	203	No	0.28
	45	205	199	Yes	0.50	203	Yes	0.50	205	Yes	0.50
5	50	205	200	Yes	0.56	204	Yes	0.57	206	Yes	0.62
	55	205	202	Yes	0.67	206	Yes	0.70	208	Yes	0.81
	60	205	203	Yes	0.72	207	Yes	0.76	209	Yes	0.88
	65	205	205	Yes	0.76	209	Yes	0.82	211	Yes	0.96
	70	205	206	Yes	0.81	210	Yes	0.86	213	Yes	0.99
	75	205	208	Yes	0.87	212	Yes	0.92	214	Yes	>0.99
	80	205	210	Yes	0.90	214	Yes	0.96	216	Yes	>0.99
	85	205	212	Yes	0.94	216	Yes	0.98	219	Yes	>0.99
	90	205	215	Yes	0.98	219	Yes	>0.99	222	Yes	>0.99
	95	205	220	Yes	>0.99	224	Yes	>0.99	226	Yes	>0.99
	5	212	188	No	0.01	191	No	<0.01	191	No	<0.01
	10	212	193	No	0.04	196	No	0.01	196	No	<0.01
	15	212	196	No	0.09	199	No	0.03	199	No	<0.01
	20	212	198	No	0.12	201	No	0.06	202	No	<0.01
	25	212	201	No	0.21	204	No	0.15	204	No	0.01
	30	212	203	No	0.30	206	No	0.19	206	No	0.04
	35	212	205	No	0.35	207	No	0.24	208	No	0.12
	40	212	206	No	0.40	209	No	0.36	210	No	0.28
	45	212	208	Yes	0.50	211	Yes	0.50	212	Yes	0.50
8	50	212	210	Yes	0.60	212	Yes	0.57	213	Yes	0.62
	55	212	211	Yes	0.65	214	Yes	0.70	215	Yes	0.81
	60	212	213	Yes	0.70	216	Yes	0.81	217	Yes	0.93
	65	212	215	Yes	0.79	217	Yes	0.85	219	Yes	0.98
	70	212	217	Yes	0.85	219	Yes	0.92	221	Yes	>0.99
	75	212	219	Yes	0.88	221	Yes	0.96	223	Yes	>0.99
	80	212	221	Yes	0.93	223	Yes	0.98	225	Yes	>0.99
	85	212	223	Yes	0.96	226	Yes	>0.99	228	Yes	>0.99
	90	212	227	Yes	0.99	229	Yes	>0.99	231	Yes	>0.99
	95	212	231	Yes	>0.99	234	Yes	>0.99	236	Yes	>0.99

4. References

- He, W., & Meyer, J. (2021). MAP Growth universal screening benchmarks: Establishing MAP Growth as an effective universal screener. NWEA Research Report.

 https://www.nwea.org/content/uploads/2021/05/MAP-Growth-Universal-Screening-Benchmarks-2021-03-12_NWEA_report.pdf
- Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking. Springer.
- Lumley, T. (2019). Survey: Analysis of complex survey samples. R package version 3.36. https://CRAN.R-project.org/package=survey.
- NWEA. (2020). Linking study report: Predicting performance on Ohio's State Tests (OST) Endof-Course (EOC) assessments based on NWEA MAP Growth scores. https://www.nwea.org/resources/ohio-linking-study-eoc/
- Pommerich, M., Hanson, B., Harris, D., & Sconing, J. (2004). Issues in conducting linkage between distinct tests. *Applied Psychological Measurement*, 28(4), 247–273.
- Thum, Y. M., & Kuhfeld, M. (2020). *NWEA 2020 MAP Growth achievement status and growth norms for students and schools*. NWEA Research Report. https://teach.mapnwea.org/impl/normsResearchStudy.pdf