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Abstract 

 

Under The Every Student Succeeds Act (ESSA) of 2015, school are being held accountable for 

their contributions to student growth in math and reading achievement.  Meanwhile research 

shows that estimates of school effectiveness are sensitive to whether they account for the time 

students spend out of school during the summer.  Despite the importance of student growth under 

ESSA and evidence on how summer learning loss can impact estimates of school effectiveness, 

most statistical models used in research and accountability do not account for the seasonality of 

achievement data.  In this study, we apply the Compound Polynomial or “CP” model in a school 

evaluation context.  The CP model addresses the seasonality of student test scores by 

simultaneously estimating between- and within-year growth.  By presenting the CP in this 

context, we provide a new statistical model that can be used to estimate school effectiveness in 

the presence of seasonal data.  From a policy standpoint, we produce evidence on how much 

ignoring summer loss may impact school accountability determinations under ESSA and other 

accountability frameworks that draw evidence from trends in assessment data. 

 Keywords: school effectiveness, growth modeling, seasonality, summer loss, program 

evaluation 
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School Effectiveness, Summer Loss, and Federal Accountability:  

Applying the Compound Polynomial Model in a Program Evaluation Context 

Research suggests that estimates of school and district quality based on achievement are 

very different than when based on estimates of growth in achievement over time (most recently, 

Reardon, 2017). Perhaps based in part on this body of research, The Every Student Succeeds Act 

(ESSA) of 2015—the primary law governing federal education accountability—emphasizes 

holding schools accountable for their contributions to student growth in math and reading over 

time.  Under the new law, 47 states plan to use student growth as an accountability indicator in 

elementary and middle school, and 33 states weight student growth the same or more than static, 

point-in-time achievement estimates (ESSA Plans, 2017).  Further, under the law, policymakers 

will often use these growth estimates to identify and intervene in the bottom 5% of schools in 

any given state (Council of Chief State School Officers, 2016; Klein, 2016).  Thus, the stakes for 

estimating student growth in a reliable and justifiable way are high.  

Despite major policy emphasis on student academic growth, no accountability plans 

under ESSA we are aware of account for summer learning loss in their models.  Summer loss is a 

well-documented phenomenon: students tend to produce test score gains, on average, between 

fall and spring, while achievement tends to drop off during the summer when students are not in 

school (Gershenson & Hayes, 2018; McEachin & Atteberry, 2017).  This issue is typically 

ignored in federal accountability (and oftentimes in program evaluation as well) despite research 

showing that this oversight can have practical consequences for which schools are deemed 

effective or ineffective (Gershenson & Hayes, 2018; McEachin & Atteberry, 2017).  Oftentimes, 

rank orderings of schools based on their contribution to growth shift substantively when using 
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spring-to-spring versus fall-to-spring growth (Gershenson & Hayes, 2018; McEachin & 

Atteberry, 2017).   

There are two primary reasons summer loss is often overlooked in federal accountability 

and program evaluation.  First and foremost, many states test students only once per year, 

eliminating the possibility of estimating within-year growth.  A second reason is the lack of 

models designed to understand within-year (e.g., fall-to-spring) versus between-year (e.g., 

spring-to-spring) growth.  On one hand, some innovative models have been employed to 

examine summer learning loss, including its impact on estimates of school and teacher 

effectiveness (Gershenson & Hayes, 2018; McEachin & Atteberry, 2017; von Hippel, Workman, 

& Downey, 2017).  On the other, many of these studies address seasonality in student testing 

data by estimating school contributions to growth separately by year, using lags rather than a true 

growth model, or employing nonparametric approaches that are agnostic on the functional form 

of trends in student data over years (Gershenson & Hayes, 2018; McEachin & Atteberry, 2017; 

von Hippel et al., 2017).   

Further, some of these models are limited because the sample of students being tested 

shifts between fall and spring (Gershenson & Hayes, 2018; McEachin & Atteberry, 2017).  To 

address this issue, researchers often limit estimates of school effectiveness only to students with 

test scores at both time periods, an approach that is not practicable for accountability purposes.  

This sample problem is exacerbated even more when fitting growth models that span several 

years and comparing them to fall-to-spring estimates from a given year. 

To help close this gap in the literature and provide evaluators with an additional modeling 

option, we apply the Cumulative Polynomial (CP) model developed by Thum and Hauser (2015) 

for estimating school contributions to student growth. Thum (2018) examined the CP as an 
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instance of the general approach of adding multiple suitably chosen curve components, of which 

the familiar piece-wise polynomial is an example. In this application, the CP model provides a 

means to simultaneously fit within- and between-year growth sub-models and, therefore, to 

better account for seasonality (Thum & Hauser, 2015; Thum & Matta, 2016). We fit this model 

using a dataset that includes vertically scaled test scores from fall and spring.  The combination 

of our model and dataset means we can investigate the effect of seasonality on estimates of 

school contributions to student growth in ways unique to this literature.  Further, by fitting our 

growth model rather than a value-added model (VAM) that regresses post-test scores on pre-test 

scores like those of McEachin and Atteberry (2017) and Gershenson and Hayes (2018), we can 

estimate patterns of within-year growth over several years that allow for more direct 

comparisons of school rankings from long-term growth models compared to single-year 

estimates more typical in the VAM literature.  

Using our data and growth model, we investigate three research questions.  First, how 

much do students’ within-year gains shift over time as they move through school?  Practically, 

this question helps show how much estimates of within-year school effectiveness may be 

sensitive to the grade levels schools serve.  Second, how much of the variance in growth is 

within schools for fall-to-spring versus spring-to-spring estimates?  Third, how strongly 

correlated are estimates of school effectiveness that use fall-to-spring versus spring-to-spring 

estimates?  Across all three research questions, our primary motivation is not to settle any of 

these issues.  Rather, we intend to explore potential uses, strengths, and weaknesses of the CP 

model in the context of school evaluation with the broader aim of supplying a new tool that 

researchers and evaluators can use to better account for the seasonality of student achievement.   

Background on Summer Learning Loss and School Effectiveness 
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 Although the literature investigating the impact of seasonality on estimates of school 

effectiveness remains sparse, the available studies indicate that school effectiveness estimates are 

sensitive to whether summer loss is accounted for in the model (McEachin & Attebery, 2017; 

Gershenson & Hayes, 2018; Papay, 2011; von Hippel et al., 2017). These studies have employed 

different data and it therefore follows that different value-added models (VAMs) have been 

used.1 Generally, when repeated test scores are available for a student, this literature relies on 

two broad categories of VAMs, lag-score and growth models, both of which we detail below in 

the context of summer loss and school quality research.  We then discuss why, given the data we 

employ, the CP model is likely useful in the context of evaluating school contributions to student 

growth in the presence of seasonality.   

Summer Loss Research Using a Lag-score Model 

 Lag-score models that regress current test scores on prior test scores, sometimes from 

multiple subjects, are often used in value-added analyses.  For example, performance during 

prior time periods is accounted for in these models as lags in the production function (Loeb, 

Soland, & Fox, 2014).  Because the slope estimates of these models are insensitive to linear 

transformations of the pre-test scale score (Briggs, 2013; Briggs & Domingue, 2012; Briggs & 

Weeks, 2011), lag-score models are particularly useful when scores across time are not vertically 

scaled (Soland, 2017).  Although the school-specific estimates in such models are regression 

residuals and thus share the same scale as the original test score, they are often reported in 

standardized units with a mean of zero and variance of one (Raudenbush, 2004).  While the test 

scores used in a lag-score model need not be vertically equated, an assumption that the test score 

scaled used is equal-interval still applies to the comparisons of residuals, even when standardized 

(Soland, 2017).  This equal-interval assumption is one reason that some research recommends 
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using value-added models that assume the test scale is ordinal rather than interval (Betebenner, 

2009). 

Growth in student test scores over time for lag-score models is also not parameterized as 

it would be in a growth model. Instead, the primary assumption made about the relationship 

between pre- and post-tests is that the latter are a function of the former, not that there is a 

specific functional form to growth over time (Raudenbush, 2004; Reardon & Raudenbush, 

2009).  Given the lack of a functional form for growth in the lag-score model, if scores across 

grade levels are indeed vertically scaled, and the scores possess equal interval properties, its use 

likely means that otherwise useful information in the data could be ignored (Kolen, 2011; Thum, 

2015a).  Further, such models are statistically problematic when the pre-test scores are measured 

with error (which they invariably are), leading to a robust errors-in-variables VAM literature 

(Thum, 2003; Lockwood, McCaffrey, & Savage, 2016).   

The most prominent lag-score study of school effectiveness in relation to summer loss 

was conducted by McEachin and Atteberry (2017) who, like us, used a dataset that included 

Measures of Academic Progress (MAP) Growth scores in math and reading from fall and spring 

administrations.  They quantified the bias produced by seasonality by comparing estimates of 

spring-to-spring gains to the alternative results for fall-to-spring gains using a fixed-effects lag-

score model.  Their results made two broad contributions to the literature.  First, they quantified 

the bias introduced into VAM estimates of school effectiveness by ignoring summer learning 

loss, with the standard deviation of the bias roughly equivalent to 25% of schools’ VAM scores 

using a spring-to-spring model.  Second, they showed that the practical effect of this bias is 

oftentimes an understatement of estimated effectiveness for schools serving low-income children 

when they are evaluated by their spring-to-spring gains. 
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Beyond school effectiveness, studies have also looked at the impact of seasonality on 

teacher VAM estimates using the lag-score model.  For example, Gershenson and Hayes (2018) 

used The Early Childhood Longitudinal Study (ECLS) to estimate teacher-level VAMs relying 

on spring-to-spring scores, then compared estimates to the results from fall-to-spring models.  As 

in the school effectiveness literature, they found substantive differences in the estimates, with the 

largest changes in mathematics.  Neither Gershenson and Hayes (2018) nor McEachin and 

Atteberry (2017) used a multilevel model.    

Growth Models 

 When repeated test scores share a common scale, value-added analyses can also be 

developed using student level growth models, with test scores nested within the student or, as is 

frequently the case in educational assessment practice, students also nested within schools or 

districts (Raudenbush, 2004; Thum, 2003).  In a growth modeling VAM framework, all test 

scores are dependent variables, which means they are treated equitably as outcomes in terms of 

the information they contribute and the role they play in helping us understand the growth of a 

student. Thus, some of the errors-in-variables corrections are less relevant, though measurement 

error still remains an issue (Thum, 2003; Lockwood, McCaffrey, & Savage, 2016).  The 

predicted outcomes are also on the same scale, as are the residuals.   

Unlike lag-score models, growth models take full advantage of the equal interval 

properties of the underlying test scale, if present (Briggs, 2013; Thum, 2015).2 If one assumes a 

practical vertical scale has been developed, estimates of school effectiveness could be reported 

on the original scale (Briggs, 2013; Soland, 2017; Thum, 2015a). When growth models are 

deployed under such scaling conditions, estimates of student growth (and school contributions to 

it) can be made between any two time points in the sample, and growth can be based on the 
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specific amount of time that elapses between test administrations when such calendar data are 

available (McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004; Thum, 2003).   

 Two primary studies we are aware of use growth models to estimate summer loss, 

including its impact on school effectiveness.  First, Atteberry and McEachin (2015) found 

statistically significant variability in students’ summer growth rates, regardless of grade level.  

That article also used MAP Growth data.  Second, Downey, Von Hippel, and Hughes (2008) 

estimated multilevel growth models and found differences in school effectiveness dependent on 

whether spring-to-spring achievement test scores were used compared to fall-to-spring within-

year estimates of growth.  Similar to the results produced by McEachin and Atteberry (2017), 

these differences were especially pronounced for schools educating low-income students 

(Downey et al., 2008). 

In both studies, the models used were nearly or fully saturated in that the number of 

parameters approached the limit of time points available.  For example, Atteberry and McEachin 

had one degree of freedom (10 time points and 9 parameters).  Similarly, Downey et al. (2008) 

employed four parameters to represent changes among performance over four time points.  As a 

result, there is no model specification error in their model and the residual is assumed to be 

known from the reported reliability of the test scale. Such an approach to the description of 

change can be regarded more as a reparameterization of a set of repeated outcomes, as is 

sometimes the practice in doubly multivariate linear models (Johnson & Wichern, 2007), and 

less represents an effort to determine the functional form underlying the observed trend in the 

data series, a common objective of growth modeling. 

The CP Growth Model 
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 Thum and Hauser (2015) employed a flexible functional form termed the “Compound 

Polynomial” (CP) for describing growth trends with marked seasonal patterns.  The CP 

represents a new approach by adding suitably chosen polynomials for fitting seasonally varying 

growth trends (Thum, 2018). The CP model has also been employed to explicitly account for 

seasonal patterns in achievement growth data in predicting college and career readiness 

benchmarks keyed on the Scholastic Aptitude Test (SAT) and ACT from middle school 

achievement in the presence of self-selection in taking the college entrance tests (Thum, 2015b; 

Thum & Matta, 2015). However, the CP has yet to be introduced into the school effectiveness or 

summer loss literature.     

 Analytically, the CP combines separate depictions of (1) a polynomial growth in 

performance (scores) that occurs within a segment (generically for year or grade level) and (2) a 

second polynomial growth model for one or more within-segment growth components (e.g., the 

predicted fall score or the linear growth rate for the year or grade level) to arrive at a distinctive 

reparameterization of the growth in test scores over time for the student.  That is, the model 

includes parameters capturing between- and within-year growth.  Further, the CP model can be 

expanded to include as many within-year test administrations as available, and employ 

instructional times that elapse between tests unique to the student.   

 Prior evidence suggests that the CP model fits test score data from multiple time points 

within a year (e.g. fall, winter, and spring) better than traditional polynomial models in the 

presence of marked seasonality.  For example, Thum and Matta (2015) and Thum and Hauser 

(2015) provided evidence that the CP fit better than a traditional polynomial model that ignored 

the seasonality of the data, as measured by the Bayesian Information Criterion (BIC) and overall 

residual variance of the model.  Further, results indicated that traditional polynomials tended to 
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overpredict test scores in the fall and under predict them in the spring, as one might expect given 

seasonal rising and falling in the data. Errors for analyses using a traditional polynomial exhibit 

strong auto-correlations as a result. Under such conditions, inferences from an independently and 

identically distributed (i.i.d.) error model are thus biased.   

 In sum, most research examining the effect of summer loss on estimates of school 

effectiveness use either a lag-score or a growth model.  While the lag-score model has some 

benefits including being insensitive to linear transformations of the pre-test scale score, school-

level estimates are residuals and therefore do not allow one to test the functional form of 

between- and within-year growth.  Among studies using growth models to estimate school 

contributions to student growth in the presence of seasonality, those models are often fully 

saturated, leaving no degrees of freedom for model fitting or testing. Given the data we employ 

and the psychometric properties of its outcomes, and the goal of describing and explaining the 

trend in changes in performance over time, the CP appears to be well-suited for exploring school 

effectiveness in a way that accounts for summer loss, allows one to test hypotheses about the 

nature of student growth in achievement, and includes parameters capturing spring-to-spring and 

fall-to-spring growth.   

Methods 

Analytic Sample  

 Our analytic sample consists of one cohort of students in an East Coast state that 

uniformly administers MAP Growth achievement tests in math and reading at multiple points 

during the year, including fall and spring.  Table 1 presents descriptive statistics on the students 

in our sample.  Students begin in second grade and finish in sixth grade.  We limited the sample 

to these grades so that we could estimate the contributions of students’ elementary schools to 
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their growth in achievement between second grade (the first year tests are typically administered 

in many ESSA plans) and sixth grade, which is often the first year of middle school.  For 

simplicity, we assigned students to their modal elementary school.3  While we used a cohort 

design, the cohort is not intact: students can move in and out of the sample at any time so long as 

they have at least one valid test score.   

 Figure 1 plots mean RIT scores in math and reading for the test administrations in Table 

1.  These mean achievement patterns are distinctly seasonal.  In virtually every year, gains 

between fall and spring are followed by decreases between spring and the subsequent fall 

(though, in some cases, there is a deceleration in growth between spring and fall rather than a 

decline in achievement).   As shown in Thum (2003), Thum and Hauser (2015), and Thum and 

Matta (2015), simply fitting a smooth polynomial to these data would likely lead to an 

underestimate of mean scores in the spring and an underestimate of those in the fall.   

 We examined school contributions to student growth for 570 schools in our sample.  In 

our analyses, we excluded schools serving fewer than 10 students in a given grade.  While our 

models can be estimated when enrollment is below 10 students, such schools are often 

anomalous in terms of their focus or student body.  For example, several of these schools were 

for students with disciplinary problems, and likely used the test as a placement screener. 

One disadvantage of using our dataset (described more in the limitations section) is that 

we do not have several student-level variables commonly used in models designed to estimate 

school contributions to student growth.  Specifically, we have each student’s race, gender, school 

attended, and vectors of achievement scores.  We do not have student socioeconomic, special 

education, or English-learner status.  School-level covariates were included by merging our data 

with the those produced by the National Center for Education Statistics (NCES).  Thus, we used 
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the same covariates as McEachin and Atteberry (2017), including proportions of white, Hispanic, 

black, and low-income student in each school.  Our models also controlled for total school 

enrollment provided by NCES, and whether the school is deemed urban versus rural.   

Measures Used 

 In the state we used, virtually all of the students take MAP Growth, an assessment of 

math and reading.  Scores are reported on the RIT scale, which ranges from roughly 120 to 290 

and is a transformation of the logit-based Rasch model estimates of student achievement.  The 

tests are vertically scaled, which means growth models that support numerical comparisons on 

the scale of the outcome variable can be estimated across time points.  MAP Growth is often 

administered in fall and spring terms, allowing for estimates of within- and between-year growth.  

Additionally, MAP Growth is a computer-adaptive test, which means students in any given grade 

and year should primarily be receiving content that is matched to their estimated achievement 

level, helping avoid instances where students are receiving content that is extremely difficult or 

easy for them.  In tandem, these attributes of MAP Growth mean that we should be able to 

estimate student growth on a consistent and comparable scale for all time periods and grades in 

the study. 

Models 

 In this section we describe methods for estimating school contributions to student growth 

before discussing methods specific to each research question. 

Estimating school contributions to student growth.  We estimated school contributions 

to student growth using models that include three levels, with time points nested within students 

nested within schools.  Before turning to the CP, we will describe a standard growth curve model 

as a point of comparison.  Under such an approach, one could model RIT scores such that y𝑡𝑖𝑗 is 
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the math or reading test score for student i in school j at time t (year/term).  In these baseline 

growth models, time t corresponds to the test administration in Table 1.  The baseline polynomial 

model is: 

 y𝑡𝑖𝑗 =  𝜋0𝑖𝑗 + 𝜋1𝑖𝑗𝑡𝑖𝑚𝑒 + 𝜋2𝑖𝑗𝑡𝑖𝑚𝑒
2 + 𝑒𝑡𝑖𝑗 .       (1) 

The level-2 model for student i within school j then becomes 

                          𝜋0𝑖𝑗 = 𝛽00𝑗 + 𝑟0𝑖𝑗                   (2) 

𝜋1𝑖𝑗 = 𝛽10𝑗 + 𝑟1𝑖𝑗 

𝜋2𝑖𝑗 = 𝛽20𝑗 + 𝑟2𝑖𝑗.   

 

 

Finally, the level-3 model for school j is  

 

                   𝛽00𝑗 = 𝛾000 + 𝑢00𝑗            (3) 

𝛽10𝑗 = 𝛾100 + 𝑢10𝑗 

𝛽20𝑗 = 𝛾200 + 𝑢20𝑗 . 

 

Variance components of the model are as follows: 

𝑒𝑡𝑖𝑗  ~ N(0,𝜎𝑡𝑖𝑗
2 )         (4)  

𝒓𝑖𝑗~MVN(𝟎,𝑻𝝅)     

𝑢𝑗~MVN(0,𝑻𝜷)  

The model that included a single polynomial term and treated all coefficients as random at the 

student and school levels fit best.4   

 By contrast, the CP model expands traditional growth models to include within-year (fall-

to-spring) growth components.  Given our sample, the CP model allows us to fit between-year 

growth curve models spanning grades two through six comparable to those in Equations 1-4, as 

well as fall-to-spring gains for each of those years.  In our models, X𝑡𝑘𝑖𝑗 is the kth CP growth 

term for time t within student i and school j where 

y𝑡𝑖𝑗 = ∑  𝜋𝑘𝑖𝑗X𝑡𝑘𝑖𝑗
5
𝑘=0 + 𝑒𝑡𝑖𝑗.     (5) 
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The level-2 model for student i within school j then becomes 

                          𝜋0𝑖𝑗 = 𝛽00𝑗 + 𝑟0𝑖𝑗                   (6) 

𝜋1𝑖𝑗 = 𝛽10𝑗 + 𝑟1𝑖𝑗 

𝜋2𝑖𝑗 = 𝛽20𝑗 + 𝑟2𝑖𝑗   

𝜋3𝑖𝑗 = 𝛽30𝑗 + 𝑟3𝑖𝑗 

𝜋4𝑖𝑗 = 𝛽40𝑗 + 𝑟4𝑖𝑗  

𝜋5𝑖𝑗 = 𝛽50𝑗 + 𝑟5𝑖𝑗 

 

Finally, the level-3 model for school j is  

 

                   𝛽00𝑗 = 𝛾000 + 𝑢00𝑗            (7) 

𝛽10𝑗 = 𝛾100 + 𝑢10𝑗 

𝛽20𝑗 = 𝛾200 + 𝑢20𝑗 

𝛽30𝑗 = 𝛾300 + 𝑢30𝑗 

𝛽40𝑗 = 𝛾400 + 𝑢40𝑗  

𝛽50𝑗 = 𝛾500 

 

Though the variance components for this model differ from those under the traditional 

polynomial, we will nonetheless refer to those variance components as 𝑻𝝅 and  𝑻𝜷.  As shown in 

Equation 7, we fit the model in several ways treating different coefficients as both fixed and 

random, and ultimately found that the model fit best (Bentler, 1990; Fieuws & Verbeke, 2006) 

when treating all coefficients as random at both the student and school level except for γ500, 

which is fixed at the school level.   

In the CP model, the first three parameters are comparable to those from traditional 

growth models in Equation 1 that only estimate between-year growth.  γ000 is the predicted 

spring score at the centering grade, γ100 is the linear growth for spring scores, and γ200 is the 

quadratic growth in spring scores across grade levels.  The other terms, meanwhile, capture 

within-year growth. γ300 is the predicted fall-to-spring growth in the centering year, γ400 is the 

linear growth rate of change for fall to spring growth, and γ500 is the quadratic term for that 

growth.  That is, the first coefficient captures the within year growth for the centering year, and 

the second coefficient captures the change in that growth rate across years.  Thus, the model tells 
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us not only how much within-year growth occurs in the centering year, but also how we might 

expect that rate to change as students move through school.  

These additional parameters in the CP compared to the traditional growth curve model 

are straightforward from a modeling perspective, and their ability to produce our estimates of 

interest may not be immediately apparent.  The main reason is that, while the models themselves 

are not overtly different, the design matrices for the two models are quite different.  The 

specifications of our CP design matrices (Xij) are provided in Appendix A. 

To explore the sensitivity of our results to the term at which time is centered, we fit 

models with time centered at grades 2 and 4.5   As shown in Table A1, for some models, t 

corresponds to the test administration in Table 1 such that estimates are centered at second grade.  

For other models (and as shown in in Table A2), t corresponds to the test administration in Table 

1 such that the time variables are centered at fourth grade.  Thus, for every research question, we 

used separate models for math and reading, as well as separate models for the two centering 

approaches, resulting in a total of four sets of parameter estimates. 

Question 1. How much do within-year gains shift over time as students move 

through school?  For this question, γ400 is the coefficient of interest.  As previously described, 

this fixed effect is an estimate of school-level changes in fall-to-spring growth over time.  For 

example, for models centered at grade two, a coefficient of -1 would indicate that mean fall-to-

spring gains are decreasing linearly at a rate of one RIT point each year between second and 

sixth grade.  Further, γ500 describes the quadratic rate of change in fall-to-spring growth over 

time. 

Question 2. How much of the variance in growth is within schools for fall-to-spring 

versus spring-to-spring estimates?  When examining how much of the variance in student test 
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scores is at the school level for fall-to-spring versus spring-to-spring estimates, the within-school 

and between-school 𝑻 and 𝜷 matrices allowed us to produce Intraclass Correlation Coefficients 

(ICCs).  These ICCs show how much of the variance in growth estimates occurs between versus 

within schools.  For example, the variance of the linear school-level estimate for spring-to-spring 

growth can be divided by the sum of the school- and student-level variance estimates to produce 

an ICC describing the proportion of the variance in linear spring-to-spring growth at the school 

level 

𝑉𝑎𝑟(𝑢10𝑗)

𝑉𝑎𝑟(𝑢10𝑗)+ 𝑉𝑎𝑟(𝑟1𝑖𝑗)
      (9) 

Similarly, the ICC in fall-to-spring growth for the centering grade can be expressed as  

𝑉𝑎𝑟(𝑢30𝑗)

𝑉𝑎𝑟(𝑢30𝑗)+ 𝑉𝑎𝑟(𝑟3𝑖𝑗)
    (10) 

One problem with the ICCs from our main CP model is that they use only linear 

parameters from models that include polynomial terms, which complicates their interpretation.  

Therefore, we also fit the models with only linear growth terms (omitting 𝜋2𝑖𝑗 and 𝜋5𝑖𝑗) and 

computed the ICCs in Equations 9 and 10 as a point of comparison.   

Question 3. How strongly correlated are estimates of school effectiveness that use 

within- versus between-year estimates?  In much of the VAM literature, school effectiveness is 

compared by producing empirical Bayes estimates of the school-level random effects and 

correlating them (Loeb, Soland, & Fox, 2014).  However, this approach is problematic in the 

context of our study for a couple of reasons.  First, in the CP, there is no single parameter of 

interest.  Just as with the ICCs, comparing only estimates of school contributions to linear 

spring-to-spring growth (𝑢10𝑗) provides an incomplete picture.  Second, the CP model includes 

parameter estimates of fall-to-spring growth in the first year, and linear and quadratic spring-to-
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spring growth based on all years in the sample.  Yet, we are mainly interested in comparing fall-

to-spring and spring-to-spring growth for a single year, not fall-to-spring growth from a single 

year and spring-to-spring growth from all years.    

Therefore, we take another approach detailed in Thum and Hauser (2015).  Specifically, 

we produce fixed effects estimates, 𝛾, and true parameter variance-covariance matrices for 

between student (𝑻̂𝜋) and between school (𝑻̂𝛽) variances.  We then use those estimates to 

produce marginal and conditional inferences about school-level achievement and growth.  In 

particular, we use 𝛾 and 𝑻̂𝛽 to generate means and standard deviations for distributions by which 

observed school-level achievement and mean gains in achievement can be converted to Z-scores 

and compared.  We produce these Z-scores in ways that condition growth on initial achievement, 

an approach not unlike that used in traditional VAM models.  Our approach is detailed in 

Appendix B. 

By using a series of contrast matrices (also described in Appendix B), we can produce 

model-based estimates of a school’s mean RIT score for any given time period and gain between 

any two time periods.  We can then standardize the actual mean RIT score gain for a given 

school between any two time points relative to the model-based distribution of those gains.  

Thus, we are not reliant on only a single parameter in the model, nor are we restricted to any 

specific time periods within the data.  This approach is much like how student and school 

achievement and growth norms are constructed (Thum & Hauser, 2015).  In simple terms, for a 

given school’s gain 𝐺 between time points 𝑡1 and 𝑡2, we produce Z scores such that: 

𝑍 =
𝐺𝑡1𝑡2 − 𝐺𝑡1𝑡2

𝑆𝐷(𝐺𝑡1𝑡2)
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To make the purpose of the Z scores clearer, consider the downside to comparing 

between- and within-year growth at the school level using a simple correlation between 𝛽10𝑗 and 

𝛽30𝑗.  These estimates represent the correlation of only the linear terms in the polynomial 

comparing within- and between-year growth.  Further, that within-year growth is the fall-to-

spring gain from year one and the between-year growth is the linear trend across all five years of 

data.   By contrast, our Z-score correlations can be used to look at the spring-to-spring gain for a 

given year compared to the fall-to-spring gain that occurs within that same spring-to-spring 

window, and those correlations can be compared for any year in the dataset. 

 When producing these Z-scores, we compared fall-to-spring gains to spring-to-spring 

gains when the latter encompassed the former.  For example, when centered on 4th grade, we 

compared spring-to-spring gains between 3rd and 4th grade to fall-to-spring gains during 4th 

grade.  This approach means the time periods being compared overlap.  To make these shifting 

comparisons easier to follow, we present results visually alongside plots of estimated RIT scores 

over time such that the time periods being compared are clear.   

Results 

Figure 2 presents plots of our model-based estimates of mean RIT scores in math and 

reading at each test administration.  As the figure demonstrates, the model-based estimates 

follow a saw-toothed pattern, just as the actual RIT scores did in Figure 1.  To confirm the 

superior fit of the CP relative to the traditional growth curve model for these data, we fit both 

just as Thum and Hauser (2015) and Thum and Matta (2015) did, and found that the CP fit better 

based on RMSE, AIC, and BIC statistics while also reducing autocorrelation in the residuals (see 

Appendix Table A3).   
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Table 2 presents fixed effects estimates of CP parameters in math and reading, 

respectively.  As previously discussed, results are with time centered at both 2nd and 4th grade for 

a total of four models.  The spring-to-spring math results in column 1 can be interpreted as 

follows: the intercept suggests that the mean conditional RIT score in spring of second grade was 

190.6, the linear growth rate was 14.5 RIT, and that trend decelerated over time per the quadratic 

term.  Meanwhile, the intercept for fall-to-spring growth suggests the mean gain in math during 

second grade between fall and spring was 13.4 RIT.   

Question 1. How Much Do within-year Gains Shift over Time as Students Move 

through School?   

Table 2 also helps answer our first research question about how fall-to-spring gains 

change as students move through school.  Fixed effect estimates indicate that within-year growth 

in math decelerates linearly at a rate of roughly 1.4 RIT for models centered at grade two and 

1.99 RIT for models centered at grade four.   For reading, that linear deceleration is almost 4 RIT 

when centered at second grade and 2.5 when centered at fourth grade.  The quadratic term 

indicates these negative rates of change in fall-to-spring scores slow for reading, but accelerate 

slightly in math.    

These results suggest that fall-to-spring growth slows considerably as students get older.  

Given the mean gain in math during second grade is 13 RIT, a deceleration of 1.4 RIT suggests 

mean gains are much smaller in subsequent years as a percentage of that year-one gain.  Though 

more research would be needed to confirm as much, these results indicate that estimated school 

effectiveness would probably differ dependent on which grades are used in a fall-to-spring 

model.   
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Question 2. How Much of the Variance in Growth is within Schools for Fall-to-spring 

Versus Spring-to-spring Estimates?   

Table 3 presents ICCs from the four models, including adaptations of those models that 

do not include spring-to-spring and fall-to-spring quadratic terms.  These ICCs suggest that, 

across models and subjects, more of the variance in linear growth is at the school level when 

estimates use within-year rather than between-year growth.  Differences are most pronounced 

when the models do not include quadratic terms.  For example, for reading centered at second 

grade, three times as much of the variance is at the school level for fall-to-spring growth than 

spring-to-spring.  Logically, these results make sense and reflect what has been found in prior 

literature: more of the variance in student gains are at the school level when those gains are 

estimated for only the time during the year when students are actually in school (McEachin & 

Atteberry, 2017).  

Question 3. How Strongly Correlated Are Estimates of School Effectiveness that Use 

within- Versus between-year Estimates?    

 Figure 3 provides correlations of the conditional Z-scores produced using the approach 

described in Appendix B (in the figure, these correlations are denoted by “rho”).  Again, these 

are correlations based on a model fit to all five years of data, but use a contrast matrix to 

compare school-level spring-to-spring gains to fall-to-spring gains in grades three and four.  One 

should note that these estimates can be made for any set of years within the data with the proper 

adjustment of the contrast matrices.   

Results indicate that correlations for between- and within-year growth range from 

moderate (.399 in reading) to strong (.705 in math centered at 2nd grade).  In practical terms, 

prior research on VAMs suggests that correlations of school effectiveness can have non-
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negligible ramifications for rank orderings of schools in a policy context when they fall below 

.90 (Koedel & Betts, 2010).  Using the same threshold, our correlations suggest that estimates of 

school effectiveness would have differential implications under policies that identify extremely 

low-performing schools dependent on whether fall-to-spring versus spring-to-spring test scores 

are used.  Unsurprisingly, our results also appear sensitive to the grade used, which could suggest 

that discrepancies between estimates are more pronounced as students move through school.        

Discussion 

The passage of ESSA has changed the school accountability landscape in this country 

significantly.   In particular, a large number of states are using school contributions to student 

academic growth as a component in their accountability systems, oftentimes weighting growth 

more heavily than static achievement (ESSA Plans, 2018; Klein, 2016).  Further, these weighted 

accountability models will be used under the law to identify and intervene in the lowest-

performing schools.  Thus, the need for estimates of school effectiveness that are accurate, 

reliable, and fair is high. 

Despite the importance of growth under federal accountability, all state ESSA plans 

available at the time of our study ignored the seasonality of student test scores, and summer 

learning loss in particular.  This oversight occurred  despite research showing that estimates of 

school effectiveness that ignore summer learning loss produce different rank orderings than those 

that do not, in part because more of the variance in student gains is attributable to schools when 

only estimating that growth during the academic year (McEachin & Atteberry, 2017).  While 

many states do not account for summer loss because they only test students in the spring and 

therefore cannot model within-year growth, there is also a shortage of statistical models that can 
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be used to compare fall-to-spring and spring-to-spring growth, including estimates of school 

contributions to that growth. 

We begin to address the methodological issues in past research and current policy by 

applying the CP model in the context of estimating school contributions to student growth.  The 

CP is designed to better describe student growth when trends are markedly seasonal.  A major 

advantage of the CP relative to other models used to estimate teacher and school effectiveness in 

a way that addresses summer loss is that comparisons of between- and within-year growth can be 

made from a single model, which helps address sample problems that arise when different 

students test in fall and spring.  Further, trends in within-year growth are directly parameterized 

in the CP. 

Beyond simultaneously modeling fall-to-spring and spring-to-spring growth, the CP is 

quite different from other models used in the literature on school effectiveness and summer loss.  

For example, other studies use lag-score VAMs (McEachin & Atteberry, 2017), which do not 

assume any functional form to student growth and do not rely on an assumption that that there is 

a vertical scale sufficient to estimate gains.  Thus, in the presence of vertically scaled test scores 

and multiple within-year test administrations, lag-score models may not maximize the usefulness 

of the data in describing student growth.  Further, for the papers that do employ growth rather 

than lag-score models to estimate school contributions to student growth in the presence of 

summer loss, the models are fully saturated and therefore do not lend themselves to testing 

assumptions of model fit, including the functional form of growth (Atteberry & McEachin, 2015; 

Downey et al., 2008).    

Implications for Policy and Evaluation 
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Besides illustrating the CP for modeling seasonal growth, our results provide evidence on 

the ramifications of ignoring the seasonality of educational testing data when estimating school 

effectiveness.   To that end, we produce several findings relevant to policymakers, program 

evaluators, and educators.  First, while accountability and evaluation models based on within-

year growth tend use fall-to-spring growth to look at school effectiveness (Jensen, Rice, & 

Soland, 2018), we show that these within-year gains have distinct trends of their own over time.  

Whereas students in second grade tend to gain about 13-14 RIT during the school year, those 

gains decelerate at a linear rate of anywhere from 1.4 to 3.9 RIT per year (though there is also a 

nonlinear component to these rates of change).  In practical terms, this finding suggests that fall-

to-spring gains are lower as students move through school.  Therefore, evaluations of teachers or 

schools based on fall-to-spring growth are likely sensitive to the grades served by the teacher or 

school without sufficient controls for those differences in the model.  The field would likely 

benefit from a closer examination of this issue. 

Second, we provide further evidence that more of the variance in student achievement 

and growth is at the school level when using fall-to-spring versus spring-to-spring growth.  This 

result matches what has been found by others (McEachin & Atteberry, 2017).  In some cases, 

twice or three times the variance is at the school level when using fall-to-spring gains.  This 

finding makes intuitive sense: schools are more associated with the academic growth of students 

during the periods when those students are in school.  Though more research is needed  in this 

area, our results are congruous with a theory that schools may be deemed as ineffective under 

ESSA for academic growth (or lack thereof) that occurs in part when students are not attending 

school.  Given our findings and those of others like McEachin and Atteberry (2017), a broader 
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policy conversation is likely needed about the extent to which schools should be responsible for 

how learning changes during the summer months.   

We also provide additional evidence that states will identify different schools as effective 

depending on whether they use fall-to-spring versus spring-to-spring growth.  According to our 

models, while correlations between spring-to-spring and fall-to-spring growth from the same 

academic year can be highly correlated (.70 or higher), such is not always the case.  Further, 

even correlations in the .70 range would likely lead to practical implications in accountability 

systems.  Koedel and Betts (2010) suggested that correlations of school VAM estimates that fall 

below .90 can have substantive ramifications for those schools when estimates are used for 

accountability.  Using that standard, none of the zero-order correlations we produce are high 

enough to indicate that accountability systems rank ordering schools based on fall-to-spring 

gains will lead to the same conclusions about schools when based on spring-to-spring growth.   

While the CP model provides evidence germane to evaluating schools and related policy, 

there are a few characteristics of the model that should be noted before it is employed.  First, our 

findings can be sensitive to how the CP is parameterized.  For example, results often differ when 

estimates of growth are centered on different grades.  On one hand, this sensitivity suggests that, 

like other models, the CP cannot get us as close as we might like to definitively identifying 

effective and ineffective schools.  On the other, a benefit to the CP model is that it can be used to 

illustrate the instability of many estimates dependent on which time periods are used in a model 

and how growth is parameterized. 

Relatedly, the CP model is not ideally suited to all policy contexts and research questions.  

For example, the CP is highly parameterized and involves considerable smoothing across time 

points.  Therefore, in accountability settings where policymakers are only interested in school 
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contributions to student growth for a single year (or other fairly discrete estimates), the CP model 

is likely not optimal.  Rather, the CP appears ideally suited for comparisons of discrepant time 

periods, especially those from different years or lengths of time that can often result in 

inconsistent samples of students being compared.  The CP model can also provide estimates of 

trends in within-year growth across several years, a parameter generally not estimated in other 

growth models.  One should note that the CP includes all the same between-year parameters as 

the traditional polynomial model, which means the former can do what the latter does, but the CP 

provides the added benefit of parameterizing aspects of within-year growth. 

Limitations of the Current Study 

 Despite the strengths of our analytic approach, this study has several limitations that bear 

mention.  First, our sample is from one state, therefore results may not generalize to the whole 

country.  Further, while virtually all students in the state took MAP Growth, there may be slight 

differences between state samples and population.  As a check on this potential within-state 

issue, we estimated models using an entropy balancing (Caliendo & Kopeinig, 2008) weighting 

scheme based on school-level covariates from federal datasets and found minimal differences in 

estimates, which is why weighted estimates are not presented.    

 Second, we relied only on a rough estimate of how much time elapsed between fall and 

spring test administrations and, therefore, how much instructional time students received.  That 

is, we assumed that students spent three quarters of the year in school, the other quarter out of 

school.  While results were not sensitive to making other generic assumptions about time in 

school (e.g., students were in school four-fifths of a year instead of three-quarters), these results 

might shift if more fine-grained calendar data are used.  We also did not include winter testing or 

summer testing data, which could be used to fit within-year polynomial submodels.  Our results 
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should be replicated using more time points within years, and better accounting for the actual 

amount of instruction students received. 

 Third, MAP Growth is a low-stakes assessment.  In the state we examined, the test is 

utilized to monitor student progress over the school year and to test goals for growth, but little 

more.  Therefore, one cannot be certain if the same results would hold for high-stakes tests.  

Despite the low-stakes nature of MAP Growth, there is reason to believe that disengagement 

among students taking the test is not a primary factor.  For example, Kuhfeld and Soland (2018) 

showed that estimates of school effectiveness using MAP Growth data change little when results 

use achievement test scores that correct for rates of disengaged responses among examinees. 

 Finally, comparable to McEachin and Atteberry (2017), we do not have several important 

student-level covariates used in many traditional VAMs.  For example, we do not have student-

level socioeconomic status data.  Thus, we cannot be sure how inclusion of such covariates 

would change estimates. 

Future Research 

 There are several additional applications of the CP model in the context of school 

effectiveness that are worthwhile to pursue, some of which have been mentioned already.  For 

example, the CP can be re-parameterized such that between-year growth is measured fall to fall 

rather than spring to spring.  Our results could be replicated using the fall-to-fall 

parameterization to see how different they are.  Further, the CP can be parameterized such that 

within-year growth is estimated directly as spring-to-fall chanes rather than fall-to-spring gains.  

For researchers primarily interested in estimates of summer learning loss, such models could be 

used to directly estimate that loss. 
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 Another potential use of the CP model is to compare school contributions to short-term 

versus long-term growth.  For example, one could use the CP to estimate school contributions to 

student growth during elementary school, and compare those results to fall-to-spring or spring-

to-spring estimates from a single year.  Such an endeavor is especially relevant to education 

policy given the increasing focus on how teachers and schools can contribute to the long-term 

college readiness of students (Conley, 2008).  In many ways, accountability policy and the 

objectives we set for schools are at odds.  Whereas state ESSA plans focus on short-term growth 

over a year or two, other policies and practices tend to emphasize college readiness, which is 

related to how much students grow academically from Kindergarten through 12th grade.  If 

school contributions to growth in the short- and long-term differ substantively, then 

policymakers may need to reconsider what the main purpose of schools are and how they should 

be held accountable for achieving those goals.  The CP model could be used to answer related 

questions without the typical issues of varying samples of students used to estimate short- and 

long-term growth.   

Conclusion 

  Research shows that schools contributing to fall-to-spring growth in achievement are 

often not the same ones contributing to spring-to-spring growth, in large part because of learning 

loss that occurs when students are out of school for the summer (McEachin & Atteberry, 2017).  

However, researchers and evaluators do not have many statistical tools at their disposal to 

reconcile differences in estimates of school effectiveness arising from the seasonality of 

educational testing data (nor do they often have the within-year repeated measures needed to use 

those statistical tools).  In this study, we apply the CP model developed by Thum and Hauser 

(2015), which can jointly estimate between- and within-year student growth, to fall and spring 
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testing data over the course of several years.  Our results suggest several benefits of using the CP 

model when data show seasonal trends.  We further show that accountability determinations for 

schools under ESSA are likely sensitive to the time periods used to measure growth, how growth 

is estimated, and whether models use fall-to-spring versus spring-to-spring gains. 
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Notes 

1. In the educational accountability context, a value-added model, or VAM, is simply any 

statistical model that seeks to isolate the impact of teachers or schools on student 

academic outcomes, within the constraints of the information available. 

 

2. Growth models for outcomes that are vertically scaled but with scores that do not have 

equal interval properties are also available. An example is a Gibbons and Bock (1987) 

model for trends in repeated classifications of patient symptoms. Another example, in 

economics, is the panel analysis of longitudinal categorical data examined by Hsiao 

(1986). 

 

3. One should also note that several statistical models have been developed to help manage 

complications that arise when matching students to teachers or schools, which are related 

to student mobility.  For example, Lockwood, McCaffrey, Mariano, and Setodji (2007) 

lay out a Bayesian approach that can help account for the methodological and substantive 

challenges associated with matching students.  As discussed later, our own study largely 

bypasses these issues by assigning students to their modal elementary school.  However, 

such topics have been given ample coverage in the literature, and could be applied to the 

models in our study.    

 

4. We compared model fit using several approaches.  For nested models, we used deviance-

based statistics.  The greater the drop in the deviance (-2 log likelihood), the more likely 

the fit is to be significantly better.  A likelihood ratio test can then be used to show 

whether changes in the deviance are significant at a given level.  These statistics are 

available as part of standard output in HLM 7 and are detailed in Raudenbush and Bryk 

(2002).  For all models, we also used the Root Mean Square Error (RMSE), Akaike 

Information Criterion (AIC), and Bayesian information criterion (BIC) (Bentler, 1990; 

Fieuws & Verbeke, 2006).  The AIC and BIC are often used for comparing non-nested 

models (Bentler, 1990; Fan & Sivo, 2005; Fieuws & Verbeke, 2006).  The AIC or BIC 

for a model is usually written in the form [-2logL +𝑘𝑝], where L is the likelihood 

function, 𝑝 is the number of parameters in the model, and 𝑘 is 2 for AIC and log(n) for 

BIC.  These various tests for nested and non-nested models are the same criteria we used 

to settle on our preferred CP model. 

 

5. One should note that one need not always recode the time variable in the data then re-run 

a model in order to ascertain the effect of centering on the estimates.  For example, 

consider the case of simple regression 

𝑦̂ = 𝑋𝑐𝛽̂𝑐 
 

where 𝑋𝑐 is the design matrix centered at time 𝑐 and 𝛽̂𝑐 is the corresponding estimated 

coefficients.  Meanwhile, for time centered at 𝑑, we have  

 

𝑦̂ = 𝑋𝑑𝛽̂𝑑 . 
 

If one sets the righthand sides of the equations equal 
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𝑋𝑐𝛽̂𝑐 = 𝑋𝑑𝛽̂𝑑, 

 

 one can solve for 𝛽̂𝑑 such that 

 

𝛽̂𝑑 = (𝑋𝑑
′𝑋𝑑)

−1𝑋𝑑
′𝑋𝑐𝛽̂𝑐   , 

 

without necessarily resorting to a re-analysis of the raw data. 
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Table 1 

            

Analytic Sample Descriptive Statistics                 
 

Year Term Grade Test 

Administration 

 
Race & Gender Proportions 

 
Mean Achievement 

(RIT Scale) 

 

     
Black Hisp. White Female 

 
Math  Reading 

 

2010 Fall 2 1 
 

0.332 0.076 0.509 0.511 
 

178.170 175.333 
 

2011 Spring 2 2 
 

0.331 0.075 0.512 0.511 
 

191.990 189.367 
 

2011 Fall 3 3 
 

0.331 0.074 0.513 0.510 
 

192.503 190.728 
 

2012 Spring 3 4 
 

0.331 0.073 0.514 0.510 
 

204.730 200.479 
 

2012 Fall 4 5 
 

0.329 0.074 0.514 0.510 
 

203.925 200.299 
 

2013 Spring 4 6 
 

0.328 0.075 0.515 0.510 
 

213.651 207.436 
 

2013 Fall 5 7 
 

0.325 0.075 0.517 0.510 
 

211.804 206.563 
 

2014 Spring 5 8 
 

0.326 0.076 0.516 0.508 
 

220.796 212.596 
 

2014 Fall 6 9 
 

0.333 0.077 0.524 0.511 
 

216.514 211.448 
 

2015 Spring 6 10   0.330 0.079 0.525 0.511   222.030 215.060    
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Table 2 

     

Fixed Effects Estimates from Growth Models         

  Math   Reading 

  Centered at 

2nd Grade 

Centered at 

4th Grade 

  Centered at 

2nd Grade 

Centered at 

4th Grade 
 

(1) (2) 
 

(3) (4) 

1. Intercept - spring to spring 190.561 212.428 
 

188.256 206.224 

 0.244 0.288 
 

0.267 0.250 

2. Linear - spring to spring 14.497 7.370 
 

11.765 6.203 

 0.115 0.044 
 

0.088 0.031 

3. Quadratic - spring to spring -1.782 -1.782 
 

-1.390 -1.390 

 0.026 0.026 
 

0.021 0.021 

4. Intercept - fall to spring gain year one 13.432 10.055 
 

13.745 7.331 

 0.123 0.087 
 

0.121 0.061 

5. Linear - fall to spring change over time -1.381 -1.995 
 

-3.953 -2.461 

 0.110 0.032 
 

0.104 0.034 

6. Quadratic - fall to spring change over time -0.153 -0.153 
 

0.373 0.373 

  0.025 0.025   0.023 0.023 
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Table 3  

   

  

Intraclass Correlations by Model and Subject   
  

  
Math   Reading 

Model with no quadratic term 

 
Centered at 

2nd Grade 

Centered at 

4th Grade 

  Centered at 

2nd Grade 

Centered at 

4th Grade 

Spring-to-spring ICC  
0.269 0.253 

 
0.152 0.152 

Fall-to-spring ICC  
0.594 0.565 

 
0.485 0.373 

  

     

Model with quadratic term  

     

Spring-to-spring ICC 

 
0.399 0.375 

 
0.178 0.201 

Fall-to-spring ICC   0.524 0.499   0.264 0.303 
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Figure 1. Scatterplots of mean RIT scores by test administration and subject. 

 

 

 
Figure 2. Model-based estimates of mean RIT scores by test administration and subject. 
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Figure 3. Model-based estimates of RIT scores with correlations of Z-score estimates and ICCs. 
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Appendix A: Building a Compound Polynomial Design Matrix 

As shown by Thum and Hauser (2015) or Thum (2018), for example, building the CP 

design matrix begins by specifying within- and between-year design matrices. The first step is to 

specify the within-year polynomial. Consider the setting in which only two assessments are 

observed within a year, for example when a score in the fall is followed after 𝑑 time units by a 

score in the spring term. If we want to model between-year growth as spring-to-spring, we set the 

within-year design matrix, 𝑫𝒘, equal to  

(
1 −𝑑
1 0

 )   

where 𝑑 is an instructional time interval (say, 9/10 of a calendar year) between the fall and spring 

terms. This design defines the intercept as the predicted spring score and the growth component 

as the predicted gain from fall to spring. Similarly, when we wish to model fall-to-fall growth 

between years, 𝑫𝒘 is equal to 

(
1 0
1 𝑑

 ) 

so as to define the within-year growth components as the predicted fall score (intercept term) and 

the fall-to-spring gain.  

For the remainder of this example, we will focus on spring-to-spring between-year 

growth.  Under this version of 𝑫𝒘, the first column is a set of intercepts for two within-year time 

points, fall and spring.  The second column represents the time that elapses between fall and 

spring.  In other words, some proportion of a year, 𝑑, elapses between fall and spring.  (One 

should note that 𝑑 can eventually be replaced with specific instructional calendar data if 

available.) 

Next, we define a 5 x 5 identity matrix, 𝑮, and calculate the Kronecker product of that 

matrix with 𝑫𝒘 to produce our first CP matrix, CP1.  That is 
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𝐂𝐏𝟏 =  𝑮 ⊗𝑫𝒘 = 

 

(

 
 

1
1

1
1

1

 

)

 
 
⊗ (

1 −𝑑
1 0

 ) =  

 

(

 
 
 
 
 
 
 

1 −𝑑
1 0

1 −𝑑
1 0

1 −𝑑
1 0

1 −𝑑
1 0

1 −𝑑
1 0 )

 
 
 
 
 
 
 

 

 

This new matrix, CP1, is a 10 x 10 matrix that is equivalent to a piecewise, within-year design 

matrix with each 2 x 2 diagonal block accounting for a year in the data.  For example, the values 

in the first two columns and in the first row represent fall of 2010, and the values in the first two 

columns and the second row represent spring of  calendar year 2011.  Similarly, the values in the 

last two columns in the last row represent spring of 2015. 

 Growth or change in the predicted spring score and the fall-to-spring gain for each year 

may then be described by a second between-year polynomial. This second design matrix for 

between year (spring to spring) growth, 𝑫𝒃, is identical to the design matrix for a traditional 

growth model. For example, the between-year spring-to-spring scores and linear trend in fall-to-

spring gains may each be described, for example, by 𝑫𝒃 =  
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(

 
 

1 0 0
1 1 1
1 2 4
1 3 9
1 4 16

 

)

 
 
. 

In 𝑫𝒃, there are five rows, one for each year of data, and three columns for the intercept, linear 

growth term, and polynomial growth term.    

 We then produce our second CP matrix, CP2, using the following Kronecker product 

with our between-year design matrix, 𝑫𝒃: 

CP2 = [𝑫𝒃  ⊗ (1,0) ] [𝑫𝒃  ⊗ (0,1) ] . 

This function produces the following 10 x 6 matrix, CP2: 

 

 

(

 
 
 
 
 
 
 

1 0 0 0 0 0
0 0 0 1 0 0
1 1 1 0 0 0
0 0 0 1 1 1
1 2 4 0 0 0
0 0 0 1 2 4
1 3 9 0 0 0
0 0 0 1 3 9
1 4 16 0 0 0
0 0 0 1 4 16)

 
 
 
 
 
 
 

 

 

CP2 can be thought of as the fall status, linear slope, and quadratic slope over grades.   

 Last, the final CP design matrix is produced by multiplying CP1 and CP2: 

 

CP = CP1 * CP2 =  
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(

 
 
 
 
 
 
 

1 0 0 −𝑑 0 0
1 0 0 0 0 0
1 1 1 −𝑑 −𝑑 −𝑑
1 1 1 0 0 0
1 2 4 −𝑑 −2𝑑 −4𝑑
1 2 4 0 0 0
1 3 9 −𝑑 −3𝑑 −9𝑑
1 3 9 0 0 0
1 4 16 −𝑑 −4𝑑 −16𝑑
1 4 16 0 0 0 )

 
 
 
 
 
 
 

 

 

In this matrix, the first three columns represent the intercept, linear growth, and quadratic growth 

terms for the between-year spring-to-spring component.  Similarly, columns four through six 

represent the intercept, linear, and quadratic growth terms across years for the within-year fall-

to-spring gains.  The final CP design matrix centered at grade two, including year, term, grade, 

and test administration, can be found in Table A1 below.  Similarly, A2 presents the same CP 

design matrix but centered at grade four.  The model can now be fit as in Equations 5-7, with the 

first five columns in matrix 𝐂𝐏 corresponding to each of the six 𝜋 parameters. 

Appendix B. Generating Z-scores Based on Random Effects Distributions 

Suppose that student 𝑖 receives pre-test and post-test scores 𝑌𝑖 = [𝑌𝑡 , 𝑌𝑡+1].  Following the 

development of prediction results for the multilevel growth model given by Thum and Hauser 

(2015), we can define a contrast matrix such that: 

𝑪 = (
𝑐1
′

𝑐2
′) = (

1 0
−1 1

)   (B1). 

 

Using this contrast matrix, we can produce 

𝑪𝒀 = (
𝑌𝑡

𝑌𝑡+1 − 𝑌𝑡
) =  (

𝑌𝑡
𝐺
) = 𝑷   (B2) 
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where 𝑌𝑡 is the starting RIT and 𝐺 is the gain. The predicted achievement is 𝑦̂ = 𝑐1
′𝑨𝛾 and the 

marginal predicted gain between times 1 and 2 then becomes 

𝐺 = 𝑐2
′𝑨𝛾   (B3) 

where 𝛾 is the 1 𝑥 6 vector of school fixed effects estimates from Equation 7 and 𝑨 is a matrix 

composed of the rows from the appropriate design matrix corresponding to the time points of 

interest (see Tables A1 and A2).  For example, when looking at growth between fall and spring 

of 2nd grade using spring-to-spring between-year growth centered at grade two,  𝑨 would 

correspond to the first two rows of the design matrix in Table A1.  Conventional results for 

expectations of random variables give the standard error of 𝐺 as 

𝑠𝑒(𝐺) =  √𝑐2
′𝑨𝑉𝑎𝑟(𝛾)𝑨′𝑐2   (B4). 

We can similarly estimate the school-level variance-covariance matrix of  𝑌𝑡 and gain 𝐺 as 

𝑽𝑠 = 𝑪[𝑨𝑉𝑎𝑟(𝛾)𝑨
′ + 𝑨𝑯3𝑻̂𝛽𝑯3

′ 𝑨′]𝑪′    (B5). 

Here, 𝑯3 is a selection matrix that identifies the random coefficients among 𝜷𝑗 for schools with 

estimated variance-covariances of 𝑻̂𝛽.  As an example, if a model included six fixed effects but 

only five random effects at the school level (as ours does), 𝑯3 selects from 𝑻𝝅 (see Equation 7) 

the terms corresponding to the five parameters with random effects. 

From here, one can take the square root of 𝑽𝑠 to get the standard deviation of 

achievement and gain estimates.  𝐺 can then be subtracted from an observed, school-level 

average gain between times one and two, and that whole value divided by the standard deviation 

to produce a Z-score, a growth effect size, for the gain between two time points.  That is, we 

estimate a Z-score for where a given school’s mean observed gain falls relative to the model 

based mean and standard deviation of that gain.  Those Z-scores can then be correlated across 
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models to determine how rank orderings of schools might change dependent on the test 

administrations used to estimate growth. 

One can also take the above approach and estimate the same Z-score, but do so 

conditional on a given school’s starting RIT, another empirically-anchored growth effect-size   

introduced as the “conditional growth index,” or CGI, in Thum and Hauser (2015). This 

conditioning better accounts for the fact that school-level growth may be correlated with initial 

mean achievement.  The method is also more akin to various baseline VAMs that condition on 

an initial pretest score.  For a given school 𝑗 with starting RIT 𝑦̅𝑗1, the expected conditional gain 

can be expressed as 

𝐺𝑆𝑗
∗ = 𝐺 + 𝑽𝑠[2,1]  ∙  𝑽𝑠[1,1]

−𝟏  ∙ (𝑦̅𝑗1 − 𝑦̂ )    (B6) 

 

And the expected conditional standard deviation for those gains as 

𝑆𝐷𝑠𝑗
∗ = √𝑽𝑠[2,2] − 𝑽𝑠[2,1] ∙  𝑽𝑠[1,1]

−𝟏  ∙  𝑽𝑠[1,2]        (B7). 

𝐺𝑆𝑗
∗  and 𝑆𝐷𝑆𝑗

∗  can then be used to produce Z-scores just as before.  This is the method that we 

used when producing Z-score correlations across estimates of school contributions to student 

growth. 

This approach need not be limited to only two time points, nor to adjacent points in time. 

The contrast matrix 𝑪 can be adjusted to support comparisons of gains between multiple time 

points.  For example, to explore the relationships amongst within- and between-year gains in our 

study, we used the following contrast matrix  

𝑪 = (
1 0 0
0 −1 1
−1 0 1

)    (B8). 
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In conjunction with a 𝒀𝑖  matrix consisting of the observed RIT scores from spring of second 

grade, fall of third grade, and spring of third grade, the contrast matrix produces: 

 

𝑪 ∗ 𝒀𝑖 = (
1 0 0
0 −1 1
−1 0 1

) ∗  (

𝑅𝐼𝑇𝑠𝑝𝑟𝑖𝑛𝑔2𝑛𝑑
𝑅𝐼𝑇𝑓𝑎𝑙𝑙3𝑟𝑑
𝑅𝐼𝑇𝑠𝑝𝑟𝑖𝑛𝑔3𝑟𝑑

) =   (

𝑅𝐼𝑇𝑠𝑝𝑟𝑖𝑛𝑔2𝑛𝑑
𝑅𝐼𝑇𝑠𝑝𝑟𝑖𝑛𝑔3𝑟𝑑 −  𝑅𝐼𝑇𝑓𝑎𝑙𝑙3𝑟𝑑
𝑅𝐼𝑇𝑠𝑝𝑟𝑖𝑛𝑔3𝑟𝑑 −  𝑅𝐼𝑇𝑠𝑝𝑟𝑖𝑛𝑔2𝑛𝑑

)    (B9) 

 

= (
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑅𝐼𝑇 

𝐹𝑎𝑙𝑙 − 𝑆𝑝𝑟𝑖𝑛𝑔 𝐺𝑎𝑖𝑛
𝑆𝑝𝑟𝑖𝑛𝑔 − 𝑆𝑝𝑟𝑖𝑛𝑔 𝐺𝑎𝑖𝑛

) 

 

Z-scores can then be produced for the initial RIT, fall-to-spring gain, and spring-to-spring gain.  

This is the contrast matrix we used when comparing within- versus between-year contributions 

to student growth.  
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Table A1 
          

 
Spring to Spring Cumulative Polynomial Design Matrix Centered at Grade 2         

Year Term Grade Test 

Administration 

 
Design Matrix: Spring to Spring 

Growth 

 
Design Matrix: Fall to Spring 

Growth 
     

Intercept Linear Quadratic 
 

Intercept Linear Quadratic 

2010 Fall 2 1 
 

1 0 0 
 

-1 0 0 

2011 Spring 2 2 
 

1 0 0 
 

0 0 0 

2011 Fall 3 3 
 

1 1 1 
 

-1 -1 -1 

2012 Spring 3 4 
 

1 1 1 
 

0 0 0 

2012 Fall 4 5 
 

1 2 4 
 

-1 -2 -4 

2013 Spring 4 6 
 

1 2 4 
 

0 0 0 

2013 Fall 5 7 
 

1 3 9 
 

-1 -3 -9 

2014 Spring 5 8 
 

1 3 9 
 

0 0 0 

2014 Fall 6 9 
 

1 4 16 
 

-1 -4 -16 

2015 Spring 6 10   1 4 16   0 0 0 
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Table A2 
          

 
Spring to Spring Cumulative Polynomial Design Matrix Centered at Grade 4         

Year Term Grade Test 

Administration 

 
Design Matrix: Spring to 

Spring Growth 

 
Design Matrix: Fall to Spring 

Growth 
     

Intercept Linear Quadratic 
 

Intercept Linear Quadratic 

2010 Fall 2 1 
 

1 -2 4 
 

-1 2 -4 

2011 Spring 2 2 
 

1 -2 4 
 

0 0 0 

2011 Fall 3 3 
 

1 -1 1 
 

-1 1 -1 

2012 Spring 3 4 
 

1 -1 1 
 

0 0 0 

2012 Fall 4 5 
 

1 0 0 
 

-1 0 0 

2013 Spring 4 6 
 

1 0 0 
 

0 0 0 

2013 Fall 5 7 
 

1 1 1 
 

-1 -1 -1 

2014 Spring 5 8 
 

1 1 1 
 

0 0 0 

2014 Fall 6 9 
 

1 2 4 
 

-1 -2 -4 

2015 Spring 6 10   1 2 4   0 0 0            
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Table A3 
     

Comparing the Fit of the Regular and Cumulative Polynomial       

Metric Math 
 

Reading 
 

Polynomial CP 
 

Polynomial CP 

RMSE 4.706 3.550 
 

4.989 4.292 

AIC 2665859.454 2573840.794 
 

2724483.903 2681070.466 

BIC 2666011.466 2574014.522 
 

2724635.801 2681244.064       

            

 

 

 

 

 



SCHOOL EFFECTIVENESS AND SUMMER LOSS 

 

ABOUT THE COLLABORATIVE FOR STUDENT GROWTH 

The Collaborative for Student Growth at NWEA is devoted to transforming education research 

through advancements in assessment, growth measurement, and the availability of longitudinal data. 

The work of our researchers spans a range of educational measurement and policy issues including 

achievement gaps, assessment engagement, social-emotional learning, and innovations in how we 

measure student learning. Core to our mission is partnering with researchers from universities, think 

tanks, grant-funding agencies, and other stakeholders to expand the insights drawn from our student 

growth database—one of the most extensive in the world. 
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