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MODEL SELECTION FOR EQUATING TESTLET-BASED TESTS IN THE NEAT 

DESIGN: AN EMPIRICAL STUDY 

INTRODUCTION 

It is a common practice for many standardized educational tests to employ a testlet-based 

format in which a bundle of items share a common stimulus (e.g., a reading passage or a situated 

task). According to Wainer and Kiely (1987), a testlet is an aggregation of items on a single 

theme. A common concern that arises regarding testlet-based tests is the violation of local 

independence (LID) assumption.  

Three methods have been proposed to address this concern. The first approach ignores 

the LID by fitting a standard dichotomous IRT model. The second approach involves fitting the 

data with a polytomous IRT model by combining the items associated with a common stimulus 

into one polytomous item. The last one involves modeling LID effects by building explicit 

models such as testlet response theory models (TRT; Bradlow, Wainer, & Wang; 1999; Wang, 

Bradlow, & Wainer, 2002) or the bi-factor model (Gibbons & Hedeker, 1992).  

In comparison with dichotomous IRT models, the TRT model (Bradlow, Wainer, & 

Wang; 1999; Wang, Bradlow, & Wainer, 2002) contains an additional random effect parameter. 

This random effect parameter, denoted by γ , accounts for the dependency between items within 

the same testlet d. γ is allowed to vary across different testlets. The larger it is, the more item 

dependence the test has. A two-parameter testlet model can be expressed as: 
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From a multidimensional modeling perspective, Li, Bolt, and Fu (2006) and Rijmen 

(2009) demonstrated the testlet model as a constrained version of bi-factor model (Eq. 2) in 

which )(ijdγ is fixed to N(0,1) and is a constant for testlet d, which is equal to the standard 

deviation of 

dC

)(ijdγ . In Rijmen’s study comparing the model equivalence among bi-factor, testlet, 

and second-order models, Rijmen (2009) further illustrated that the testlet model was equivalent 

to the second-order multidimensional IRT model for testlets, i.e., a constrained bi-factor model. 
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In the second-order model, items directly depend on their respective specific dimension, which 

in turn relies on the general dimension. Specific dimensions are conditionally independent from 

each other. 
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Ignoring the testlet effects has been shown to inflate estimates of score reliability and 

precision (DeMars, 2006; Dresher, 2004; Sireci, Thissen, & Wainer, 1991; Wainer, 1995; 

Wainer & Thissen, 1996; Yen, 1993) and yield biased item parameter estimates (Acherman, 

1987; Bradlow, Wainer, & Wang, 1999; Demars, 2006; Li & Rijmen, 2009; Yen, 1993). For 

example, Rijmen (2009) and Li and Rijmen (2009) indicated that ignoring the testlet effects by 

fitting a unidimensional IRT model tended to result in a mild shrinkage of the parameter 

estimates. On the contrary, no scale shrinkage occurred as the result of applying bi-factor model. 

DeMars (2006) demonstrated that the additional parameters in the bi-factor model did not appear 

to decrease the accuracy of the primary trait or slope estimates.  

In many large-scale testing programs, equating/linking is indispensable when different 

test forms are used. As discussed above that the choice of model has a significant impact on item 

parameter estimates in testlet-based tests, it is expected that equating results may be different 

given the use of different models. To the knowledge of the authors, only four relevant studies 

(e.g., Lee et al. (2001); Li & Cohen (2003); He et al. (2011); Tao et al. (2011)) have examined 

this issue. Using real data, Lee et al. (2001) explored the use of the nominal response model and 

the graded response model (GRM) for equating when the LID is present in the test. Their results 

demonstrated that the more the IRT assumptions are violated, the greater the discrepancies 

between equipercentile and IRT equating results. Using both IRT true- (TS) and observed-score 

(OS) equating and real data, Li and Cohen  (2004) indicated that equating results using item 

parameter estimates from the TRT model were consistent with results obtained from 

conventional equipercentile observed score equating. Unlike polytomous IRT models, the TRT 

model yielded quite stable equating results across different equating methods investigated in 

their study. Tao et al. (2011) and He et al. (2011) respectively applied the TRT and the bi-factor 

models to equating tests solely composed of testlets. However, both studies used simulation; and 

it would be of interest to conduct a study comparing equating results from using TRT and bi-
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factor models. As such, the primary purpose of this study was to apply the IRT true-score 

equating method to equating testlet-based tests using both TRT and bi-factor models under the 

non-equivalent group anchor-test (NEAT) design. In addition, the equating results from using the 

TRT and bi-factor models were compared with those from using conventional dichotomous IRT 

models. 

METHODS 

Data 

Real data came from a state-wide reading test. Both base (Form A) and new (Form B) 

forms originally contain 50 items. Form A consists of 4 testlets along with 5 independent items, 

whereas Form B consists of 4 testlets along with 3 independent items. There is one testlet in 

common between Forms A and B, and this common testlet has 12 items. As this study was 

focused on the testlet-based test, all independent items were excluded from analysis thus 

reducing Form A to 45 items and Form B to 47 items. Table 1 provides an overview of the 

characteristics of both forms.  

[Insert Table 1 about here] 

Analysis Procedure 

Before conducting equating, several exploratory procedures were carried out including 

checking total and anchor test score distributions, test dimensionality, reliability, local 

independence, and model-data fit. For test dimensionality, principal component analysis (PCA) 

was conducted via SAS. Model-data fit analysis aimed at identifying a model that could best 

explain the data, and the candidate models were a series of conventional IRT logistic models 

(i.e., 1PL, 2PL, and 3PL), TRT models with and without guessing, and the bi-factor model. 

Ideally, item parameter estimation is limited to one software package to prevent software 

differences from contaminating the final results. To this end, WinBUGS (Spiegelhalter et al., 

2002) came as a natural choice, which provides a flexible and straightforward approach for 

calibration using the Bayesian MCMC method. For this study, the means of the Bayesian 

posterior distributions were used for item parameter estimates for the purpose of IRT true score 

equating. The priors used for the parameter estimation are presented in Table 2. The non-

informative priors were used. Depending on the complexity of different candidate models, 

different numbers of iterations were run in WINBUGS with a single long chain ranging from 
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15,000 for conventional IRT models up to 70,000 for TRT models. The burn-in cycles for all 

models were set at 5000. Several diagnostic criteria available in WINBUGS were used to 

evaluate convergence including dynamic trace lines, history plots, auto-correlation lines, 

Gelman-Rubin convergence statistics, and quantile plots.  

[Insert Table 2 about here] 

An advantage that WINBUGS can provide is that the DIC that it reports can be used to 

evaluate model-data fit.  The DIC, based on the posterior distribution of the deviance (i.e., -

2(log-likelihood); denoted as D), provides a model complexity measure that can be applied to 

hierarchical models (Spiegelhalter et al., 2002). The DIC is defined as  

PDDDIC += )(η  

The first term indicates an estimated average difference between data and model, whereas 

the second term, called “effective number of parameters”, indicates the difference between the 

posterior mean of the deviance and the deviance at the posterior mean of the parameters. The 

smaller the value of DIC is, the better the model is. According to Spiegelhalter et al. (2003), a 

difference of less than 5 units does not provide adequate evidence favoring one model over 

another.  

The degree of dependency between items was evaluated using Yen’s Q3 statistic (1984) 

and the random effects in the TRT model, i.e., γ estimated by the WINBUGS. As mentioned 

above, γ can account for the dependency between items within a testlet. Studies (e.g., Wang, 

Bradlow, & Wainer, 2002; Wang & Wilson, 2005) suggest the magnitudes of the random effects 

γ .2, .9, and 1.5 representing small to large effects. To compute Q3 for any pair of items, first, 

each examinee’s ability estimate (denoted by θi) and item parameter estimates must be estimated 

based on the selected IRT model. Then, each examinee’s expected score (Eij), i.e., the probability 

of correct response, is computed given the selected IRT model. The difference between an 

examinee’s observed score (Oij) and the expected score, dij, can be calculated according to the 

following equation: 

dij= Oij-Eij 

The Q3 value for item j and j’ is the correlation of dj and dj’ taken over all examinees. The 

expected value of Q3 is approximately -1/(n-1) if the local independence holds true, where n 

denotes the total number of items in a test.  
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Equating Design and Equating Methods 

 Equating Design 

In this study, the NEAT design was considered. Separate calibrations followed by 

mean/mean linking method (Loyd & Hoover, 1980) were used to put the item parameter 

estimates of two forms on a common scale. Once linking constants, i.e., the slope (A) and the 

intercept (B), were obtained, IRT true score (TS) equating was conducted. Under the mean/mean 

method, the slope and the intercept constants used to put item parameter estimates on the new 

form to the scale of the base form were calculated in the following manner: 

A=
base

new
a

a  

B= newbase bAb −  

basea and baseb  respectively represent the means of item discrimination and item difficulty 

parameter estimates of the common items on the base form, whereas newa and newb  represent the 

means of item discrimination and item difficulty parameter estimates of the common items on 

the new form. Once linking constants are worked out, the parameters on the new form can be 

transformed to the scale of the old form according to the following manner: 

Aaa inewinew /* =  

BAbb inewinew +=*  

where * indicates a transformed value for item i. Note that for all models of interest in 

this study, the same mean/mean linking method described above was used.  

IRT True Score Equating 

The IRT TS equating in general involves two major steps. For the NEAT design, once 

item parameters for two forms are put on the same scale, the first step identifies a θ that can yield 

a specified true score on the new form. Using the θ value identified in the first step and the item 

parameter estimates on the base form, the second step looks for the corresponding true score on 

the base form. Kolen and Brennan (2004, p. 177-178) explain how to apply the Newton-Raphson 

method to find the θ value in the first step for the conventional IRT model using an iterative 

process.  
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 To conduct IRT TS equating for the TRT model, one key step is to figure out how to 

compute the true score, which is explained in Li, Bolt, and Fu (2005).  Briefly speaking, the term 

)(ijdj γθ − in the TRT model in Equation 1 has to be reparameterized. As the result of 

reparameterization, the probability of answering item i correctly conditional on θ can be 

provided by the following, using the notations in Li, Bolt, and Fu (2005). Let jdξ = )(ijdj γθ −  

dddddiddi dhypyp ξξξ σθξξσθ );|()|1();|1( ∫ ===  

h indicates the distribution of dξ given θ . dξσ are assumed known, as are the item parameters. 

The integral can be approximated using the Gaussian quadrature method 

dddddi dhyp ξξσθξξ );|()|1(∫ = =  ∑
=

P

p
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1
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where and represent node and weight. For a test with D testlets and K items within each 

testlet, the true score for the whole test can be calculated as follows: 
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Once item parameters for two forms are put on the same scale, the true score equating for the 

TRT model can be conducted using the Newton-Raphson method. The mean/mean method used 

in the TRT model to put items on two forms on the same scale works in the same manner as that 

in any conventional IRT model.    

With respect to the TS equating using the item parameter estimates from the bi-factor 

model, only the primary trait is of interest, that is, the two forms are equated only through the 

primary trait. As explained at the beginning of this paper, constraining the loading on the 

secondary dimension to be proportional to the loading on the primary dimension reduces the bi-

factor model to the TRT model. This means that, in order for the ti in Equation 2 to be 

comparable to the item difficulty parameter in the conventional IRT model, further 

transformation needs to be conducted on the parameter estimates from the bi-factor model. 

According to Reckase (1985), the transformation can be conducted as follows:   

Let ai1, ai2,…, aik denote factor loadings, i.e., discrimination parameters, corresponding to 

the k latent dimensions for item i, and di indicates the intercept related to an overall 

multidimensional difficulty for item i.  
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MDIFFj=-dj/MDISCj 

MDISCj can be calculated by ∑
=

k

k
ika

1

2

 
. MDIFF can be interpreted much like the item difficulty 

parameter in the conventional IRT model.  
 Two traditional equating methods using the NEAT design were considered in this study 

including equipercentile and linear equating, which was carried out by CIPE (Kolen, 2004), IRT 

TS equating using three conventional IRT models and bi-factor model was conducted using PIE 

(Hanson & Zeng, 1995). IRT true score equating using TRT was completed by a program written 

with Matlab languages. In total, this study conducted equating eight times, described as follows. 

For each equating, a raw-to-raw conversion table was generated.  

 

Equipercentile+Linear+ TS equating with IRT models (1PL, 2PL, 3PL) + TS Bi-factor+ TS TRT 

models (2PL, 3PL) 

 

Evaluation of Equating 

As in Lee et al. (2001), the results from the equipercentile and the linear equating method 

were used as the baselines for the reason that these methods do not assume local independence.  

Three indices, defined as follows, are used to evaluate equating results: weighted bias 

(WBS), weighted root measure square error (WRMSE), and weighted absolute bias (WABS). In 

addition, the notion of difference that matters (DTM; Dorans & Feignebaum, 1994; Dorans, 

Holland, Thayer, & Tateneni, 2003) was adopted to evaluate the magnitude of the difference 

between the two conversion tables. A difference of .5 was considered significant as it resulted in 

the change in the reporting scores.  
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where  fi is the frequency of number-correct raw score level i, Vi is the equivalent of a number-

correct score of I on the new test using an IRT method, and Wi is the equivalent of a number-

correct score of i on the new test using the equipercentile method.  

RESULTS 

Overall Score and Anchor Item Score Distribution 

Table 3 reports the descriptive statistics for total scores and anchor item scores for both 

forms. In general, the groups did not differ much in their ability and the forms were similar in 

difficulty. Both overall score and anchor item score distributions for two forms are portrayed in 

Figure 1 and Figure 2. For Form A, the correlation between anchor item score and total score is 

.808, whereas for Form B, the correlation is .814.  

 [Insert Table 3 about here] 

                                                       [Insert Figures 1 and 2 about here] 

Dimensionality 

Table 4 reports eigenvalues from principal component analysis for two test forms. 

Clearly, each form has one dominant factor and several trivial factors, suggesting that both tests 

are essentially unidimensional.  

 [Insert Table 4 about here] 

Reliability 

Cronbach a was used to evaluate reliability for the two test forms. For the base form, 

Cronbach a is .864, whereas for the new form, Cronbach a is .866.  

Item Dependency 

Yen’s Q3 statistics 

Table 5 reports the mean, standard deviation of Q3 statistics for within-testlet item pairs 

in base and new forms respectively. The expected Q3 statistics, calculated by -1/(n-1), were 

slightly different for each form. For the base form, only Testlet 1 displayed a positive Q3 value 

while Testlets 2 and 4 had Q3 values close to 0, suggesting that these testlets might exhibit item 

dependency. For the new form, none of the testlets display positive Q3 statistics, and Testlet 3 

had Q3 statistics close to 0, suggesting that this testlet may display more serious item dependency 

than others. Overall speaking, the base form may display a higher degree of violation of the item 

dependency than the new form.  
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[Insert Table 5 about here] 

Random Effects γ  

Table 6 reports the variance of γ for each testlet in both forms. According to the prior 

literature (e.g., Wang, Bradlow, & Wainer, 2002; Wang & Wilson, 2005) which suggests the 

magnitudes of the random effects γ .2, .9, and 1.5 representing small to large effects, both test 

forms did not display much serious within-item dependency. For the base form, Testlets 1 and 4 

exhibit more within-item dependencies than the other two testlets; whereas for the new form, 

Testlet 3 exhibits the largest degree of item dependency among all four testlets. The common 

testlet, Testlet 2 in both forms, displayed a very similarly small degree of item dependency. It is 

worthwhile to note that the magnitude of random effects γ seems to depict a picture of within-

item dependency similar to that by the Q3 statistics. 

[Insert Table 6 about here] 

Model-Data Fit 

Table 7 reports the DIC values for two forms across different models. Given the criterion 

that a smaller DIC value indicates a parsimonious model with better model fit, the following 

observations can be made: 1) among all three conventional IRT models, the  IRT 3PL model fits 

the best; 2) among IRT 2PL, TRT 2PL, and bi-factor model, the bi-factor model appears to fit the 

best and fits slightly better than the TRT 2PL model; and 3) the TRT 3PL model fits slightly 

better than the TRT 2PL model.  

[Insert Table 7 about here] 

Item Parameter Estimation by the MCMC 

 As mentioned in the Analysis Procedure, a series of diagnostic tools output by the 

WINBUGS were use to check estimation convergence. In general, estimation convergence was 

satisfactory especially for the simple models such as IRT 1PL, IRT 2PL, and bi-factor models. 

To make sure that the estimates from the WINBUGs were comparable to those from the 

commercial software, they were also correlated with those from the commercial software 

packages including BILOG-MG and TESTFACT and publically available software SCORIGHT 

(Wang, Bradlow, & Wainer, 2005). Specifically, 1) the item parameter estimates for the three 

conventional IRT models were correlated with those from the BILOG-MG. The results indicated 
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very high correlation for both a and b parameters (.99 and 1 respectively), but slightly lower 

correlation for the c parameter (.81). 2) The item parameter estimates for the bi-factor model 

were correlated with those from TESTFACT. The results indicated the correlation coefficients of 

.96 for the MDIFF and .95 for the primary factor, i.e., the one used for equating. And 3) the item 

parameter estimates for the TRT models were correlated with those from the SCORIGHT. The 

results indicated the correlation coefficients ranging from .94 to .97 for all parameters except the 

guessing parameter, for which, the correlation coefficient was .83.  

Comparisons with Different Equating Methods 

Figures 3 and 4 portray the score differences conditional on raw score. The differences 

were computed by, at each raw score level, subtracting the equated score of the baseline equating 

method (equipercentile or linear) from the equated score of each equating method. The DTM 

bound is marked by two red lines in both figures.  

Based on the criterion set for DTM, i.e., |.5|, the bi-factor and IRT 3PL models tended to 

yield the closest results to those by the equipercentile method with the exception that, the bi-

factor model tended to produce slightly lower scores defined by the DTM at the score range 18-

22, but the IRT 3PL model tended to produce slightly higher scores defined by the DTM at the 

high-end of the scale 35-46.  The TRT 2PL yielded the second closest results to the baseline 

equipercentile method. The IRT 3PL—among all three conventional IRT models—provided the 

equating results that were closest to those by the equipercentile method. All equating methods, 

except the TRT 3PL and the IRT 3PL models, tended to yield lower scores than the 

equipercentile method, in particular, in the score range (18-29). The TRT 3PL model consistently 

yielded higher scores beyond that defined by the DTM than the equipercentile method except at 

the tails of the raw score scale. The differences in scores between the different equating methods 

and the equpercentile method tended to diminish toward the high-end of the scale. In general, the 

IRT 1PL model provided the most divergent results from those by the equipercentile methods.  

[Insert Figure 3 about here] 

When the linear equating results served as the baseline, the IRT 3PL—among all three 

conventional IRT models—provided the closest scores to the others in accordance with the 

criterion set for DTM, i.e., |.5|. The bi-factor model provided the second closest equating results 

11 
 



to those by the baseline methods. With the exception of the TRT 3PL model, all models tended 

to yield lower scores than those by the baseline linear method.  

[Insert Figure 4 about here] 

Table 8 reports the WBS, WABS, and WRMSE between the equated scores and the 

baseline scores. The results were not consistent when different traditional equating results served 

as the baselines. Among the three conventional IRT models, the IRT 2PL model provided the 

closest equating relationship to the equipercentile method, but the IRT 3PL model provided the 

closest equating relationship to the linear method. In comparison with the bi-factor model, the 

TRT 2PL model tended to yield closer equating relationship to the equipercentile method, though 

the differences in results produced by the bi-factor and the TRT 2PL models were not 

significantly large. However, the bi-factor model tended to yield closer equating relationship to 

the linear equating method than the TRT 2PL model. In general, the bi-factor and TRT 2PL 

models yielded the most similar equating relationship to the equipercentile baseline method than 

the rest of the models. And the TRT 3PL model yielded the most similar equating relationship to 

the linear baseline method, followed by the Bi-factor model.  

[Insert Table 8 about here] 

CONCLUSION AND DISCUSSION 

It is accepted that testlet format can not only preserve the advantage of multiple-choice 

format allowing for efficient administration and objective scoring, but also provide more 

flexibility and efficiency in testing different aspects of cognitive activities. Literature (e.g., 

Demars, 2006; Rijmen, 2009; Wang, Bradlow, & Wainer, 2002) suggests that both the TRT and 

bi-factor models are two useful models that can be used to model data from this particular 

format. To the knowledge of the researchers, this study, using empirical data from a large-scale 

state-wide reading test, was the first study exploring equating of testlet-based tests with the TRT 

and the bi-factor models under the NEAT design.  

In this study, specifically, several models were considered as candidate models used for 

IRT true score equating, and their performance were compared with those of two traditional 

equating methods—equipercentile and linear. Before equating was conducted, a series of 
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evaluation procedures were conducted including detecting item dependency level and model-data 

fit. For the former, both Q3 statistics and r—estimated by the WINBUGS—were used and 

results indicate a small magnitude of item dependency. Model-data fit was evaluated by the DIC 

values reported by the WINBUGS and the results suggest that the models that can account for 

the item dependency fit the data better than the conventional IRT models. When it comes to the 

equating, the IRT true score results in general suggest that equating using models that can 

account for the item dependency in general tend to yield closer equating relationship to the 

traditional equating methods than the conventional IRT models. This finding is in accordance 

with that by Lee et al. (2001), despite that the Lee et al.’s study explored the use of polytomous 

IRT models to equate the testlet-based tests.  

It should be noted that, though using traditional equating results as baselines may sound 

reasonable, the generalization of the results in this study should be cautioned due to the lack of 

the true equating line. A simulation study which considers different levels of item dependency 

should be conducted in the future to investigate whether the results in this study can be 

replicable. At the same time, using other equating results such as the IRT observed score method 

and other equating designs should be explored in future studies.  
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APPENDIX 

Table 1. Overview of the Characteristics of the Base and the New Forms 

  
Sample 

Size 
No. 

Items 
No. 

Testlet 
No. Items in 
each Testlet 

Form A 3263 45 4 13, 12, 9, 11 
Form B 3944 47 4 11, 12, 13, 11  

 

Table 2. Priors Used for Model Estimation 

  a b c a2   
IRT 1PL N(0.01)  
IRT 2PL LogN(0, 4) N(0, .25)  
IRT 3PL LogN (0, 4) N(0, .25) N(.15, 400)  
Bifactor LogN (0, 4) N(0, .25) LogN (0, 4)  
TRT 2PL LogN (0, 4) N(0, .25) Gamma-1(1,1) 
TRT 3PL LogN (0, 4) N(0, .25) N(.15, 20)   Gamma-1(1,1)   

Note. Empty cells indicate Not Applicable 

 

Table 3. Descriptive Statistics for Total Scores and Anchor Item Scores for Both Forms 

  FORM A   FORM B 

STATS TOTALSCORE ANCHORSCORE   TOTALSCORE ANCHORSCORE

MEAN 35.59 9.97 39.01 10.21 

SD 6.68 1.82 6.43 1.71 

MIN 4 0 8 1 

MAX 45 12   47 12 

MEDIAN 37 10 41 11 

SKEWNESS -1.01 -1.16 -1.34 -1.37 

KURTOSIS 3.87 3.61 4.92 4.27 
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Table 4. Eigenvalues from Principal Component Analysis for Two Test Forms 

  Form A  Form B

Factor1 6.905 7.468 

Factor2 1.396 1.388 

Factor3 1.235 1.160 

Factor4 1.138 1.131 

Factor5 1.103 1.123 

Factor6 1.083 1.102 

Factor7 1.067 1.045 

Factor8 1.038 1.022 

Factor9 1.026 1.001 

Factor10 1.001  0.999 

 

Table 5. Q3 Statistics for Within-Testlet Item Pairs 

    Base Form     

Testlet 1 2 3 4 Expected 

Mean 0.005 -0.009 -0.018 -0.003 -0.023 

SD 0.024 0.025 0.022 0.028   

    New Form     

Testlet 1 2 3 4 Expected 

Mean -0.019 -0.010 -0.004 -0.017 -0.022 

SD 0.025 0.024 0.029 0.025   
                                       Note. The expected value of Q3 is -.023 for the base form, whereas it is -.022 for the new form.  
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Table 6. Random Effects r in Each Testlet 

    Base Form   

Testlet 1 2 3 4 

TRT2 0.181 0.087 0.098 0.123 

TRT3 0.191 0.092 0.098 0.133 

    New Form   

Testlet 1 2 3 4 

TRT2 0.061 0.084 0.105 0.066 

TRT3 0.067 0.092 0.107 0.074 

 

Table 7. DIC Values for Different Models 

  Base Form    New Form 
  IRT TRT Bi-factor   IRT TRT Bi-factor 

1PL 125148 ~ ~ 135401 ~ ~ 
2PL 123718 123446 123104 133382 133334 133021 
3PL 123531 123327  ~   133195 133135  ~  

   Note. ~ indicates not applicable. 

 

Table 8. WBS, WABS, and WRMSE for Each Model Using Equipercentile and Linear Methods as 

Baselines 

  WBS  WABS   WRMSE 
  Equi%ile Linear  Equi%ile Linear   Equi%ile Linear 
IRT1 -0.303 -0.670 0.433 0.838 0.652 1.068 
IRT2 -0.065 -0.301 0.324 0.618 0.416 0.741 
IRT3 0.587 -0.221 0.607 0.423 0.631 0.491 
BIFAC 0.287 -0.079 0.326 0.369 0.346 0.424 
TRT2 0.136 -0.231 0.268 0.542 0.339 0.632 
TRT3 0.620 0.254  0.620 0.279   0.714 0.412 
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Figure 1. Overall score distribution 
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Figure 2. Anchor item score distribution 
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Figure 3. Difference in equating scores between IRT TS equating and equipercentile equating. 
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Figure 4. Difference in equating scores between IRT TS equating and linear equating. 

 


