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Introduction 

For both linear and adaptive tests, it is crucial to evaluate mode-data fit because the 

goodness-of-fit (GOF) of item response theory (IRT) models are relevant to any purpose of a 

test. To date, all item fit statistics are derived based on linear tests and almost all studies have 

been done in the context of linear testing. These studies are conducted based on assumptions 

under regular conditions for fixed test forms, such as no missing responses and normal 

distribution of unidimensional ability for a population.  

Because sample and item invariance properties of item response theory (IRT) heavily rely 

on how well model and data fit in current testing practices, evaluating the GOF of a model by 

examining item and person fit statistics becomes an important part of operation procedure in 

validating the appropriateness of IRT model (Wells & Bolt, 2004; Chon, Lee, & Dunbar, 2010; 

Hambleton & Han, 2004; Sinharay & Lu, 2008; Stone & Zhang, 2003). A general approach to 

evaluating GOF involves the comparison between observed and model-predicted distributions 

for various ability subgroups using chi-square fit statistics. Among many procedures to assess 

GOF of dichotomous and polytomous IRT models at item level (Bock, 1972; Douglas & Cohen, 

2001; Glas & Suarez-Falcon, 2003; McKinley & Mills, 1985; Orlando & Thissen, 2000, 2003; 

Sinharay, 2006; Stone, 2000; Yen, 1981), the GOF statistics can be classified as traditional 

classical fit statistics, such as PARSCALE’s or Bock’s (Murak & Bock, 2003) G2, and Yen’s 

(Yen 1981) Q1 indexes; and Stone’s (Stone, 2000) pseudo-observed score fit statistics χ2* and 

G2*, in which both type fit statistics use model-based theta estimates to obtain the observed 

proportions. The alternative item fit statistics, such as S − X2 and S − G2 statistics (Orlando & 

Thissen, 2000, 2003), are based on joint likelihood distributions for each possible summed raw 

score. The performance of both types of item fit statistics applied to mixed dichotomous and 

polytomous items have been evaluated by many researchers (Chon, Lee, & Dunbar, 2010; 

Dodeen, 2004; Sinharay & Lu, 2008). However, all these studies are conducted under normal 

conditions of linear (fixed form) test assumptions, such as no missing responses and normal 

distribution of ability population with unidimensionality.  

Compared to the sample data of item calibration for a linear test, the conditions to collect 

item calibration sample data for a computerized adaptive test (CAT) are usually less ideal 

because of the intrinsic nature of the CAT test—i.e., the restriction of the ability range and 

sparseness of data matrices (Ban, Hanson, Yi & Harris, 2002; DeMars, 2002; Glas, 2000; Glas & 
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Pimentel, 2008; Harmes, Parshall & Kromrey, 2003)—and the problems of restriction range and 

sparse matrix in CAT data is essentially a problem of missing data. According to Rubin’s (1976) 

missing data mechanisms, educational data can be classified as missing completely at random 

(MCAR), missing at random (MAR), or missing not at random (MNAR). Within the latent 

variable modeling framework (Muthén, Asparouhov, Hunter, & Leuchter, 2011), if data missing 

is related to observed variables, then it can be MAR; if data missing is related to latent variables, 

such as student achievement ability, then it is MNAR, and such missing data refers to non-

ignorable missing data. The type of missing data in CAT is MNAR. Tables 1 and 2 show 

examples of missing data in linear and CAT tests. Because S − X2 and S − G2 statistics are based 

on sum scores and this type of statistic cannot be used for CAT data where each student gets 

different items, this study only focuses on the performance of χ2* and G2* statistics. 

The impact of CAT data on item parameter estimation has been studied by many 

researchers. Wainer and Mislevy (2000) and van der Linden and Glas (2000) investigated 

capitalization of item calibration errors in CAT; other studies (Lord & Wingersky, 1984; Thissen 

& Wainer, 1982) show that precision of item parameter estimation correlates directly with the 

distribution ability of examinees used for calibration. The performances of fit statistics for linear 

tests have been extensively examined under different conditions such as sample size, sample 

distribution, test length, IRT model type, and mixed item format. A few researches have 

examined the impact of MNAR absence in CAT data on the performance of these GOF statistics. 

CAT has been used in licensure and certification for decades and nowadays, CAT is becoming 

more popular in medical and educational tests. Right now, Oregon, Delaware, and Idaho use 

CAT in their state assessments, and several other states (Georgia, Hawaii, Maryland, North 

Carolina, South Dakota, Utah, and Virginia) and the Smarter Balanced Assessment Consortium 

are in various stages of CAT development. Other than dichotomously scored items, all state 

assessment programs require polytomous scored items in their tests and currently, most states use 

one or two of following dichotomous and polytomous IRT models in their state programs: (1) 

Rasch model (Rasch, 1960), (2) Three-parameter logistic model (3PL, Lord & Novick, 1968), (3) 

Samejima's (1969) graded response model (GRM), (4) Muraki's (1992) generalized partial credit 

model (GPCM), (5) Master's (1982) partial credit model (PCM), and (6) Andrich's (1978) rating 

scale model (RSM). In general, the advantages of a polytomous model are (a) the amount of item 

information provided by a polytomously scored item is greater than that from a dichotomously 
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scored item (Baker, 1992; Bock, 1972; Sympson, 1983; Thissen & Steinberg, 1984, Samejima, 

1969); (b) the rate of detecting mismeasured examinees using a polytomously scored item is 

greater than it is when using a dichotomously scored item. 

Given the increasing popularity of CAT in statewide assessments along with the wide 

adoption of polytomous IRT models for performance-based items, particularly in the 

implementation of the Common Core State Standards (CCSS), there is a pressing need to 

evaluate the performance of some commonly-used fit statistics for polytomously scored items, 

which were developed based on linear tests but have been employed to the adaptive testing. 

Through a simulation, this study examines the impact of missing data on the item fit statistics, χ2* 

and G2*, between a linear test and a computerized adaptive test based on IRT.  

 

Method 

IRT data-model fit using fit statistics 

The basic idea of testing IRT data-model fit using fit statistics is to compare expected and 

observed frequencies of item category (either dichotomous or polychromous) responses for 

different IRT ability (theta) scores. Traditional IRT fit statistics treat estimated theta as observed 

scores, and major steps to calculate traditional IRT fit statistics involve 

1) Grouping ability to approximate continuous theta distribution (for example, 10 groups 

from -4 to 4). How the intervals are created and how many intervals are created are 

arbitrary. 

2) For any ability groups, getting observed score distribution and expected score distribution 

using IRT model, item parameter estimate, and midpoint of theta level of subgroup. 

3) Comparing observed and expected distributions and examining the residual for each item. 

For example, 

i) Chi-square (or likely ratio of chi-square) based on the GOF statistics: 

𝜒2 = ∑ ∑ 𝑛𝑘
�𝑂𝑘𝑗−𝐸𝑘𝑗�

2

𝐸𝑘𝑗𝐽𝐾 ,                              (1) 

Where k and j represent the ability subgroup of theta and score response, respectively, 

𝑂𝑘𝑗 and 𝐸𝑘𝑗  are the observed and expected proportions for ability subgroup k and 

score response j, respectively, and 𝑛𝑘 is the frequency of individuals in subgroup k. 
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Yen’s Q1 (1981) is for dichotomously scored item 𝜒2, and Bock’s χ𝐵2  (1972) is 

similar, except k may vary. 

ii) The standardized residual based on the GOF statistics (Hambleton & Han, 2004): 

 

          𝑧𝑘𝑗 =  
�𝑂𝑘𝑗−𝐸𝑘𝑗�

�𝐸𝑘𝑗�1−𝐸𝑘𝑗�

𝑛𝑘

,                                    (2) 

The fundamental problem using theta values to group frequencies is that theta values are 

never directly observed, because theta is latent-variable. Two different ways to deal with this 

problem are (1) using raw score and (2) using pseudo-observed score distribution. 

(1) Using total raw score instead of theta in fit statistics. For example, for S-χ2 and S-G2 fit 

statistics proposed by Orlando and Thissen (2000, 2003) for dichotomous items, the examinees 

are divided into n groups based on total raw score. The χ2 and G2 for polytomous items have the 

form for item i: 

𝑆 − 𝜒𝑖2 = ∑ ∑ 𝑛ℎ
(𝑂𝑖𝑐𝑘−𝐸𝑖𝑐𝑘)2

𝐸𝑖𝑐𝑘

𝐶𝑖
𝑐=1

𝑘𝑚𝑎𝑥
𝑘=𝑘𝑚𝑖𝑛

,                          (3) 

and 

     𝑆 − 𝐺𝑖2 = 2∑ ∑ 𝑂𝑖𝑐𝑘ln (𝑂𝑖𝑐𝑘
𝐸𝑖𝑐𝑘

)𝐶𝑖
𝑐=1

𝑘𝑚𝑎𝑥
𝑘=𝑘𝑚𝑖𝑛

,                          (4) 

where nk is the number of examinees in raw score group k; Oick and Eick are observed and 

expected proportions, respectively, for item i, category c and summed score group k. The join 

likelihood of achieving a summed raw score k can be obtained by using recursive algorithm, and 

the expected proportions are computed by  

𝐸𝑖𝑐𝑘 = ∫𝑃𝑖𝑐(𝜃)𝑆𝑘−𝑐
∗𝑖 ∅(𝜃)𝑑𝜃

∫𝑆𝑘∅(𝜃)𝑑𝜃
,                                (5) 

where 𝑃𝑖𝑐(𝜃) is the item response category function for category c of item i; 𝑆𝑘−𝑐∗𝑖  is the posterior 

score distribution for score group k-c for a scale without item i; 𝑆𝑘is the posterior score 

distribution for score group k and ∅(𝜃) is the population distribution of ability 𝜃. 

(2) χ2* and G2* fit statistics use pseudo-observed score distribution (PSSD) for a limited  

number of discrete ability 𝜃 points to take precision of theta estimate into account (Stone, 2000; 

Stone, Mislevy, & Mazzeo, 1994). The PSSD is the posterior expectations that classify each 

examinee into several cells of the item fit table based on their entire distribution of posterior 

expectations of ability 𝜃. The χ2* and G2* for item i are computed as 
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𝜒𝑖2∗ = ∑ ∑ 𝑟𝑖.𝑘[(𝑟𝑖𝑐𝑘/𝑟𝑖.𝑘)−𝐸𝑖𝑐𝑘]2

𝐸𝑖𝑐𝑘

𝐶𝑖
𝑐=1

𝐾𝑖
𝑘=1 ,                             (6) 

and  

𝐺𝑖2∗ = 2∑ ∑ 𝑟𝑖𝑐𝑘
𝑟𝑖.𝑘

ln [𝑟𝑖𝑐𝑘/𝑟𝑖.𝑘
𝐸𝑖𝑐𝑘

] 𝐶𝑖
𝑐=1

𝐾𝑖
𝑘=1 ,                             (7) 

where rick and Eick are the pseudo-count and expected proportion, respectively, for categorical 

response c of item i at ability level k (𝜃 = 𝑘), and ri.k represents the posterior expectation of the 

number of attempts at ability level k for item i. The difference of theta-based fit statistics 

between traditional and the PSSD is that an examinee’s contribution to the item fit is distribution 

over 𝜃 levels rather than restricting the contribution to a single cell based on a point estimate of 

𝜃. According to Stone (2000), the more imprecisely 𝜃 is estimated, the wider the posterior 

expectations are distributed across the 𝜃 range. The null hypothesis of fit statistics H0 for a given 

item is:  

                         H0: πkc = Pc(θk), 

where πkc is proportion of individuals from the population scoring at score level c and ability 

level k, and Pc(θk) is probability of individuals from the population scoring at score level c and 

ability level k from a given model. 

Stone (2000) provided an example of distribution of pseudo counts for three students 

responding with scores of 0, 3 and 4 to a given item in linear test: 

 

Stone’s example 

θ group              0     1     2    3      4      
   -1.90   0.00     
   -1.47   0.02     
   -1.05   0.10     
   -0.63  0.27      0.00     
   -0.21   0.35**    0.03     
  +0.21   0.21           0.19     
  +0.63   0.05          0.41** 0.00   
  +1.05  0.01       0.29 0.05   
  +1.47   0.00     0.07  0.23   
  +1.90       0.00 0.37**   
   +2.32            0.25   
   +2.74            0.08   
   +3.16        0.01   
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The difference of posterior expectations of theta for a point estimate (PE) from a linear 

test (PE-linear), PSSD from a linear test (PSSD-linear; sum of the probabilities for given 

examinee is 1), and posterior expectations of theta from a CAT test (PSSD-CAT; sum of the 

probabilities for given examinee may or may not be 1) can be illustrated for score 0 of a given 

item: 

                  

                 PSSD-linear       PSSD-CAT         PE-linear         

0.00    0.00          0.00  
0.02     0.00    0.00  
0.10     0.00    0.00  
0.27     0.27    0.00  
0.35**    0.35**   0.35**  
0.21     0.21    0.00  
0.05     0.00    0.05  
0.01     0.00    0.00  
0.00     0.00    0.00         

                   Sum of Prob=1      Sum of Prob=?       Sum of Prob≠1              

 

The impact of the difference between the PSSD-linear and the PSSD-CAT on χ2* and G2* 

is our major focus for this study.  

  

Design of Simulation Study 

The primary goal of this design is to maximize generalizability and replicability of 

research results. The polytomous IRT models investigated are the generalized partial credit 

model (GPCM, Muraki, 1992) and the graded response model (GRM, Samejima). 

 Table 3 lists all four variables manipulated in the study and their IRT models, test length 

(20, 40, 100), testing algorithm (linear and CAT), and missing rate (MR 0, 0.80 and 0.60). The 

reason to choose the highest MR around 0.8 is to set a low boundary of MR in the study. In 

practice, most real CAT programs have MR larger than 0.8. For example, in the NWEA MAP 

reading CAT test, the usual MR reaches above 0.90 (Wang & Harris, 2011). The MR is not an 

independent variable because MR is function of test item length and bank size: 

                             MR=1- Test Length
Item Bank Size

.                             (1) 
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 A sample size of 10,000 is used across all conditions. The dependent variables are 

empirical Type I error rates for two fit statistics χ2* and G2*. The performance of fit statistics 

based on a linear test will be used as the baseline so the performance of fit statistics based on 

CAT can be compared to these baseline results. A total of 50 replications for each design 

condition will be conducted in this study. Because pseudo-observations are not independent, 

which means probability for each examinee contributes to multiple groups, and one of the 

family of chi-squared distributions cannot be assumed (Stone, 2000), the fit statistic is a scaled 

chi-squared random variable (Stone, Ankenmann, Lane & Liu, 1993). Resampling procedures 

can be used to obtain estimates of the scaling factors and effective df (γ and ν). According to 

Stone (2000), the Monte Carlo re-sampling procedure for estimating scaling corrections is 

used to approximate a null chi-square distribution. The resampling procedure involves the 

following:  

1. Given item parameter estimates from scaling the observed test data, calculate 

the fit statistic using the posterior expectations;  

2. Generate K random samples under Ho using the item parameter estimates from 

the original data and an assumed ability distribution (N(0,1));  

3. Compute the item fit statistics using the posterior expectations for each kth 

simulated sample; 

4. From the empirical sampling distribution under Ho (K fit statistics), compute 

estimates of γ and ν; and 

5. Rescale the fit statistic using γ and compare the rescaled fit statistic to a chi-

squared distribution with ν (df).  

In this study, the number of replication of resampling is 100 across all conditions. A total of 

30 replications for each design condition will be conducted in this study.  

 

Generation of Item and Person Parameters 

Table 4 presents information about distributions of person-ability parameters, item 

discrimination (slope) and categorical (step) parameters.  

 

Data Analysis  

Both linear and CAT response data were generated using SAS (SAS Institute Inc., 2008).  
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All CAT tests are fixed test-length tests. The item-selection procedure is a maximum 

information-selection method among a given group of items that have item locations parameter 

values ranging from -0.2 to 0.2 logit around any provisional ability estimate during the CAT test. 

The ability estimation method used in this study is the expected a posteriori (EAP: Bock & 

Aitkin, 1981) method. For the linear test, test length is used as size item bank, and CAT 

simulation runs through the whole bank to get linear test responses. For example, for a 20 item 

test, the bank size is set to 20 and run a CAT test length of 20 items. After generating both linear 

and CAT responses, the responses based on GPCM and GRM models are calibrated using 

PARSCALE. The calibrated item parameters and generated responses for both models are used 

as input for computing fit statistics. 

The fit statistics χ2* and G2* and resampling are computed using the SAS macro IRTFIT 

(Bjorner, Smith, Stone, & Sun, 2007). Because Stone’s fit statistics is the theta-based method, 

the likelihood for theta that is necessary to calculate the pseudo-counts can be computed even if 

some items are unanswered, because IRTFIT will use information for all items that are not-

missing. If the observed count of a given item for some ability level is very low, IRTFIT will not 

output fit statistics for that item, and we label that kind of item as not-used items in the item bank.  

 

Results 

Table 5 shows the Type I error rates (α) of χ2* and G2* across different simulation 

conditions. α is the number of flagged misfit items under a given condition. Since the number of 

replication of resampling is set to 100, the number of flagged misfits is also the percentage of 

flagged misfit items under given condition. As shown in Table 5, in general, for a fixed-length 

test that has a 100% ratio of test length over bank size, χ2* and G2* can be obtained for all items 

and this is reflected in the column labeled “ % Average Number Item Used”; for CAT test, χ2* 

and G2* can be obtained only for part of the items in item bank. For example, based on the 

GPCM and for test length 20 and bank size 100, fit statistics χ2*can be obtained for only 53% of 

items, and the rest have a very low count in cells to calculate fit statistics. Although only partial 

items in the item bank can be evaluated using fit statistics, the number of used items (53 items) is 

still greater than that of the test length (20 items), and “% Average Number Item Used” is also 

greater that the ratio of test length over bank size.  
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As can be seen in Table 5, the average Type I error rate increases as test length increases 

for a linear test, and this is expected because as the number of items increases, the chance of 

getting misfit items increases. The interesting finding for this study is that the average Type I 

error rate decreases for a CAT test compared to a linear test. For example, for an item bank of 

100, both Type I error rates for test lengths 20 and 40 are smaller than those of a 100 test-length 

test, which is a linear test. However, this reduction in Type I error rates could be due to a shorter 

test compared to 100 items. The results of Type I error rates across models show that items based 

on a GPCM model have better fits than those of GRM, and this could come from the fact that 

GRM does not allow step reverse. In this study, the simulated item parameters for both GPCM 

and GRM come from the same distributions (see Table 4), and all the distances between step 

parameters are one logit. Although the chances that easy step parameters have larger logit values 

than any adjacent hard-step parameters are very slim, it still exists. This is not a problem for 

GPCM, but it could cause problems for GRM. 

 

Educational Importance of the Study 

Due to the advantages of CAT over linear tests in state and large scale assessments, CAT 

is gaining popularity in statewide assessment. Model-data fit is a very critical step in CAT 

applications like CAT item development and scoring. One of the direct consequences of failing 

to detect GOF of items in CAT is being unable to estimate a student’s ability correctly. The 

errors in student achievement ability estimates could result in misclassifying students in 

educational learning, instruction and evaluation decisions. The majority of previous studies on 

the GOF of IRT models focused on linear tests, and all GOF statistics used so far were developed 

for linear tests, so little is known about whether GOF statistics results based on linear tests can be 

generalized to CAT. The results from this research provide empirical evidence regarding the 

effects of CAT data on GOF statistics and can be used to guide practitioners about performance 

of GOF statistics in CAT environments. First, we recommend not applying the same set of rules 

for item fit to CAT and linear tests. In either standard-alone or embedded-field CAT tests, we 

should not expect all field-test items to be used to fit IRT models. Hence the attrition rate 

(percentage of field-testing items that will not be used as operational items) due to CAT 

algorithm alone (having nothing to do with item quality) will be higher than that in linear field 

testing. Second, because of the intrinsic nature of CAT (i.e., the restriction of ability range of 
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examinees), the responses collected from CAT have impact item fit results compared with linear 

tests. Hence only selected item fit statistics that use theta as a grouping variable can be used to 

evaluate item model fit. The results from this study show that CAT field testing design needs 

more prudent thinking than that of linear tests. 
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Table 1: Example of Missing Data (Dichotomous Item Responses) from a Linear Test with Test  
 Length = 5 and Number of Persons = 20* 

 

 
Item  

  
 

Sub-
content 1  Sub-content 2  Sub-

Total1 
Sob-

Total2 
Person I1 I2   II1 II2 II3  RS1 RS2 
P1 1 1  1 1 0  2 2 
P2 1 .  1 0 .  1 1 
P3 1 0  1 1 0  1 2 
P4 1 1  0 1 0  2 1 
P5 . 1  1 0 1  1 2 
P6 1 1  0 0 0  2 0 
P7 1 0  1 1 0  1 2 
P8 1 1  0 1 0  2 1 
P9 1 .  1 . 1  1 2 
P10 1 1  0 0 0  2 0 
P11 1 1  1 0 .  2 1 
P12 1 0  1 1 0  1 2 
P13 1 1  0 1 0  2 1 
P14 0 1  . 0 1  1 2 
P15 1 1  0 0 0  2 0 
P16 . 0  1 . 0  1 1 
P17 1 1  0 1 0  2 1 
P18 1 1  1 1 0  2 2 
P19 1 .  1 0 0  1 1 
P20 1 0   1 1 0  1 2 

 
 *: “.” represents missing 
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Table 2: Example of Missing Data (Dichotomous Item Responses) Sorted by Person Ability (from Low to High) and Item Difficulty  
 (from Easy to Hard) from a CAT Test (Due to Test Design) with Test Length = 5 out of Item Bank Size= 30 and Number of  
 Persons = 20* 

  
 Item    

 Sub-Content 1 + Sub-Content 2 
 Sub-

Total1 
Sob-

Total2 

Person 
I 
1 

I 
2 

I 
3 

 
I 
4 

I 
14 

I 
6 

I 
7 

I 
8 

I 
12 

II
13 

I 
11 

I 
9 

I 
10 

I 
5 

II
15 

II
16 

II
17 

II
18 

I 
3 

II
26 

II
27 

II
28 

II
29 

II
24 

II
25 

II
19 

II
20 

II
21 

II
22 

II
30 

 

RS1 RS2 
P15 1 . 0 1 0 0 . . . . . . . . . 

     
. . . . . . . . . .  2 0 

P6 . 1 1 0 1 0 . . . . . . . . . . . . . . . . . . . . . . . .  1 2 
P10 . . 1 . 1 0 0 . . . . . . . . . . . . . . . . . . . . . . .  0 2 
P4 . . . 0 1 1 1 . 0 . . . . . . . . . . . . . . . . . . . . .  1 2 
P5 . . . . . 1 0 1 1 0 . . . . . . . . . . . . . . . . . . . .  3 0 
P6 . . . . . . . 1 . 0 0 1 0 . . . . . . . . . . . . . . . . .  2 0 
P7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 1 
P8 . . . . . . . . . . . 1 0 1 1 0 . . . . . . . . . . . . . .  2 1 
P9 . . . . . . . . . . . . . 1 1 0 0 . . . . . . . . . . . . .  2 1 
P10 . . . . . . . . . . . . . 1 0 0 1 1 . . . . . . . . . . . .  1 2 
P11 . . . . . . . . . . . . . . 1 . 1 0 1 0 . . . . . . . . . .  1 2 
P12 . . . . . . . . . . . . . . . . 1 1 . 0 1 0 . . . . . . . .  3 0 
P13 . . . . . . . . . . . . . . . . 1 

 
1 0 1 0 . . . . . . . .  2 1 

P14 . . . . . . . . . . . . . . . . . 0 1 1 1 
 

0 . . . . . . .  1 2 
P15 

 
. . . . . . . . . . . . . . . . 1 1 0 . 1 

 
0 . . . . . .  1 2 

P16 . . . . . . . . . . . . . . . . . . 1 1 . 0 1 0 . . . . . .  1 2 
P17 . . . . . . . . . . . . . . . . . . . 1 1 . 0 1 0 . . . . .  3 0 
P18 . . . . . . . . . . . . . . . . . . . . 1 1 . 0 1 0 . . . .  3 0 
P19 . . . . . . . . . . . . . . . . . . . . . 0 1 1 0 

 
0 . . .  2 0 

P20 . . . . . . . . . . . . . . . . . . . . . . . . 1 1 0 1 
 

0  3 0 
 
*: “.” represents missing 
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Table 3: Research Design (Sample Size = 10,000) 
 

Design IRT 
Model 

Test 
Length 

Testing 
Algorithm 

Item Bank 
Size 

Missing Rate (%) 
(1-Test Length/Bank Size) 

1 GPCM 20 Linear 20* 0 
 GRM 20 Linear 20* 0 
      

2 GPCM 40 Linear 40* 0 
 GRM 40 Linear 40* 0 
      

3 GPCM 20 CAT 100 80 
 GRM 20 CAT 100 80 
      

4 GPCM 40 CAT 100 60 
 GRM 40 CAT 100 60 
      

5 GPCM 100 CAT 100 0 
 GRM 100 CAT 100 0 
      

*: Items for linear tests are drawn from generated CAT item banks, and then matched to items used for    
  CAT tests so that performances of these items can be compared between linear and CAT tests.  
 

Table 4: Generated Parameter Distributions of Models (Sample Size = 10,000) 

Model θ a b d1 d2 d3 d4 
GPCM N(0,1) Log(N(0,0.4))  N(-1.5,0.5) N(-0.5, 0.5) N(0.5, 0.5) N(1.5, 0.5) 
GRM N(0,1) Log(N(0,0.4))  N(-1.5,0.5) N(-0.5, 0.5) N(0.5, 0.5) N(1.5, 0.5) 
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Table 5: Average Type I Error Rates (α) of Goodness-of-Fit Statistics X2*and G2* over 30 
Replications 

Model Fit 
Statistics 

Bank 
Size 

Test 
Length 

Average  
Number 
of Items 
Used 

% 
Average  
Number 
of Items 
Used 

Missing 
Rate 
(%) 
 

Ratio of  
Test 
Length/ 
Bank 
Size 

Average 
Type I 
Error 
Rates (α) 

GPCM X2* 20 20 20.00 100.00 00.00 1.00 2.00 

  
40 40 40.00 100.00 00.00 1.00 4.30 

  
100 20 52.75 0.53 80.00 0.20 1.25 

  
100 40 76.89 0.77 60.00 0.40 4.00 

  
100 100 100.00 100.00 00.00 1.00 10.30 

 
G2* 20 20 20.00 100.00 00.00 1.00 2.00 

  
40 40 40.00 100.00 00.00 1.00 3.80 

  
100 20 52.25 0.52 80.00 0.20 1.25 

  
100 40 76.56 0.77 60.00 0.40 3.89 

  
100 100 100.00 100.00 00.00 1.00 8.50 

      
 

 
 

GRM X2* 20 20 20.00 100.00 00.00 1.00 4.44 

  
40 40 26.67 100.00 00.00 1.00 4.33 

  
100 20 15.33 0.15 80.00 0.20 4.67 

  
100 40 36.10 0.36 60.00 0.40 2.20 

  
100 100 52.00 100.00 00.00 1.00 7.30 

 
G2* 20 20 20.00 100.00 00.00 1.00 4.10 

  
40 40 26.67 100.00 00.00 1.00 3.67 

  
100 20 23.60 0.24 80.00 0.20 3.60 

  
100 40 36.10 0.36 60.00 0.40 3.30 

  100 100 52.00 100.00 00.00 1.00 6.00 
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