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One unfortunate characteristic of most highly visible educational accountability systems is their close 

tie to a single or very few consequential levels of academic achievement.  For example, the Adequate 

Yearly Progress provision of the No Child Left Behind Act of 2001 focuses exclusively on a 

�proficiency� level of achievement.  Since attainment of �proficiency� is the sole level for which 

credit is granted in this system, the concern is that students making good progress but not enough to be 

considered �proficient� receive no credit toward an index of being �accountable�.  Over time, students 

who are considered too far from the �proficiency� level to be able to attain it by assessment time, run 

the risk of losing instructional attention in favor of more �proficient probable� students.  Similarly, 

students who are obviously beyond the key �proficiency� level can also lose instructional attention.  

Any positive change in their status will not affect the accountability index.   

Various authors have addressed this dilemma.  For example, Linn, Baker, and Betebenner (2002) 

proposed a system that assigns fractional credit to performance categories other than �proficient�.  

Flicek and Lowham (2001) proposed using individual student growth referenced to longitudinal 

growth norms as a method of incorporating and giving credit for progress made, even though the end 

performance status might fall short of a performance criterion.  Kingsbury (2000) proposed a �hybrid 

success model� for setting individual student growth expectations for students based on their 

proximity to an achievement target, thus allowing both status and growth to demonstrate 

accountability.  What distinguishes the Flicek and Lowham and the Kingsbury proposals is the central 

role each assigns to individual student growth within an accountability scheme.  Both consider 

individual growth as an integral part to accountability, not merely as an optional supplement (or 

worse, an interesting side note) to performance status. 

This paper is predicated on a rather simple argument: in order for academic growth to serve in a 

fundamental role in an accountability system, the amount of growth a student would reasonably be 

expected to attain over some set time interval (i.e., a growth expectation, standard, or target) must be 
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able to be declared in advance.  These declarations, or others based on them, will typically be 

translated into a form of value within an accountability scheme.  This value, in turn, will be at least 

part of the evidence for judging the extent to which the school (or district or state) is being successful 

or �accountable�.  For example, a district expectation might be that all 4th grade students grow by X 

amount.  While this expectation is certainly convenient, its reasonableness is open to question.  Is it 

reasonable to assume that all students in a single grade would grow at the same rate?  For a high 

achieving student, requiring average grade level growth will likely be more demanding than requiring 

average grade level growth from a lower achieving student.  A lower achieving student might even be 

thought of as �under-challenged�.  Neither student would be treated equitably.   

A �reasonable� growth target can be thought of as the proximity between the observed growth and the 

expected growth; the closer the observed growth is to expected growth, the more reasonable the 

growth target.  This position implies that observed growth that is substantially greater than the target is 

no more or less reasonable than observed growth that is substantially less than the target.  With a focus 

on individual student growth, it should be possible to create a method of defining reasonable, equitable 

growth targets for each student using characteristics of the individual student�s past performance.  

There is already strong evidence, for example, that the rate of growth is often associated with initial 

student achievement status (e.g., NWEA, 2002; Seltzer, Choi, & Thum, 2002a, 2002b).    

The purpose of this study was to evaluate several feasible models for determining single-year 

academic growth targets for individual students.  These models are detailed in the next section.  

Single-year growth targets were considered as the most likely points from which declarations of the 

value of observed growth would be defined for use in an accountability system (e.g., �value added� 

systems).  This study was undertaken as an initial, empirical exploration of some of the territory 

involved in this area.  The study is certainly not definitive, though it holds implications for questions 

such as: �How much academic growth can we reasonably expect a student to make over the course of a 

year?�; �Is it reasonable to ask all students in the same grade to grow at the same rate?�;  �Can the 

observed growth of large numbers of students who were in the same grade level and in the same 

achievement range, help to define reasonable growth?�.  The study does not address how growth data, 

per se, should be used in an accountability system, only on how an equitable baseline of growth could 

be established. 
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Methods 

Data sources. 

Data for the study came from three cohorts of student test records.  Two of the cohorts (A and B) were 

from a single moderate sized school district in Wyoming.  The district has 28 elementary and four 

middle schools and a total student population of slightly over 12,000.  For these cohorts there were 

four waves each of spring achievement data in reading and mathematics (spring 1999 through spring 

2002).  The third cohort (C) came from the Northwest Evaluation Association 2002 RIT Scale Norms 

Study.   The test records making up this cohort are from students in nine districts in six states.  In this 

set there were 10 waves of fall and spring achievement data in reading and mathematics (fall 1996 

through spring 2001).  For Cohorts A and B, the last wave contained the scores to be predicted.  In 

Cohort C, the last wave also contained the scores to be predicted.  But in Cohort C, the ninth wave 

(fall 2000) was not considered as observed.  In all cohort datasets, only those student records 

containing complete test data for a subject area were included in the analyses for that area.  Thus, for 

example, a particular student�s complete reading test data would be included even though their 

mathematics test data were incomplete (and not included).  These cohort characteristics are 

summarized in Table 1. 

 

Table 1.  Characteristics of the cohort data sets

Reading Math

A 1 4 S99, S00, S01 S02 / 5 655 659
B 1 4 S99, S00, S01 S02 / 6 738 742
C 9 10 F96, F97, F98, F99, S01 / 8 3876 4132

S97, S98, S99, S00 

a F = fall; S = spring

Cohort
Districts 

represented

"Observed" waves used 
for prediction
 term,year a

Predicted 
term,year / 

grade
Total 
waves
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Table 2 presents achievement data for the three cohorts.  Achievement levels between the cohorts were 

comparable in common grades for the spring terms.  Variance in common grades in Reading tended to 

be slightly higher in Cohorts A and B than for Cohort C.   The reverse was true in Mathematics.  In 

Mathematics for Cohort C, a trend of increasing variance from the first wave to the last was observed. 

 

 

Table 2.  

Grd Med. Mean SD Min. Max. N Med. Mean SD Min. Max. N
S-99 2 192 188.7 14.72 148 226 655 190 189.0 12.54 144 226 659
S-00 3 202 199.0 13.81 152 234 655 203 201.6 12.42 148 239 659
S-01 4 210 207.3 14.03 144 239 655 213 212.2 11.07 159 250 659

 S-02* 5 215 213.9 12.78 164 252 655 222 221.9 12.15 174 264 659

S-99 3 201 198.5 13.83 148 232 738 202 200.5 11.57 161 229 742
S-00 4 209 206.4 12.77 152 237 738 211 210.9 11.58 168 255 742
S-01 5 215 213.7 12.95 154 247 738 220 220.2 12.45 177 254 742

 S-02* 6 220 219.1 12.40 155 247 738 228 226.8 12.73 180 262 742

F-96 4 204 201.7 13.49 143 233 3876 201 200.4 11.30 149 247 4132
S-97 4 210 208.3 13.20 143 243 3876 210 209.4 12.13 154 255 4132
F-97 5 211 209.1 12.96 147 241 3876 210 209.5 12.42 155 252 4132
S-98 5 216 214.6 12.67 154 251 3876 218 218.0 12.97 150 263 4132
F-98 6 217 215.5 12.12 155 250 3876 218 217.2 13.10 172 261 4132
S-99 6 222 220.1 11.97 156 258 3876 225 225.5 14.88 172 278 4132
F-99 7 222 220.1 11.68 156 256 3876 226 226.2 15.25 160 282 4132
S-00 7 225 223.5 12.37 166 261 3876 234 233.9 16.35 171 293 4132
F-00 8 225 224.3 11.95 160 268 3876 235 234.5 16.56 164 290 4132

 S-01* 8 230 229.1 11.60 165 269 3876 242 242.1 17.10 184 294 4132

* Designates the season-year for which scores were predicted.

Season-
Year

Cohort C

Descriptive statistics of cohort performance in reading and mathematics by season and year.

MatematicsReading

Cohort A

Cohort B
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Tests characteristics.  All tests used in this study were created from the NWEA item banks in Reading 

and Mathematics.  These banks are comprised of several thousand test items that have been calibrated 

for difficulty using the one-parameter Item Response Theory (IRT) model (Rasch model).    Item 

difficulty and student ability are both expressed in Rasch Units (RITs) on the same scale.  A RIT is 

simply the linear transformation of the logit theta metric that sets the unit at .10 logits and centers the 

scale at 200 (i.e.,  RIT = θ*10 + 200).   Thus, a RIT of 210 is equivalent to logit = 1.  There is one 

scale for Reading and one scale for Mathematics.  Paper and pencil Achievement Level Tests in 

Reading can measure dependably from about RIT 149, ±3.6 (percentile 2 in fall grade 2) to about RIT 

252, ±5.1 (percentile 98 in spring grade 10).  In Mathematics, paper and pencil tests measure 

accurately from about RIT 156, ±3.8 (percentile 2, fall grade 2) to about RIT 276, ±5.5 (> percentile 

98 in spring grade 10).  Well-targeted level tests typically have measurement error in the 2.8 � 3.3 

range.  Computerized-adaptive versions extend slightly the measurement ranges with these levels of 

associated measurement error.  A complete description of the technical characteristics of NWEA tests 

can be found in the NWEA Technical Manual for Achievement Level Tests and Measures of Academic 

Progress (2003).   

NWEA RIT Scale Norms.  Several of the models used to determine individual student growth targets 

used data reported in the NWEA 2002 norms study.  This study includes the test records of 

approximately 1.05 million students representing 321 school districts in 24 states.  The districts ranged 

from very urban to very rural.  They ranged in size from under 200 to over 60,000 students.   

The norms study provided several specific data elements.  Grade level means and standard deviations 

of student status and growth in the grades of interest were used.  For status level data, these were 

based on roughly 71,000 to 89,000 students per grade level.  Grade level growth means were based on 

intact groups of students; that is, student growth was based on the same students having both scores 

used to calculate a change (growth) score.  Spring-to-spring grade level growth means were based on 

roughly 44,000 to 54,000 students per grade level.  Growth means were also retrieved that were 

disaggregated by the starting status level of students.  These means were calculated for all students 

whose achievement status at the beginning of the comparison period fell into each 10 point RIT block.  

RIT blocks were set at 140-149, 150-159, 160-169, . . . . ≈ 260-269.  The numbers of students used 

to compute the means in these RIT block cells ranged from 258 to over 14,000.  Average N�s for all 

RIT block cells were 4427 for Reading and 4495 for Mathematics.  Spring-to-spring growth 

distributions are summarized in Tables 3a, 3b for Reading and in Tales 4a, and 4b for Mathematics.   
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Grd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
2-3 17.3 11.31 16.0 11.08 16.1 9.66 13.9 8.20 12.5 7.50 11.0 6.40 9.2 6.06 7.2 5.74
3-4 13.8 9.80 14.0 9.59 11.7 8.52 9.9 7.42 8.5 6.65 7.0 6.03 5.5 5.91 3.5 5.95 -2.6 7.47
4-5 12.2 10.19 13.3 8.73 11.6 8.37 9.9 7.63 8.4 6.88 6.9 6.10 6.0 5.74 4.5 5.56 3.2 6.14
5-6 12.3 9.02 10.3 8.56 9.2 7.99 7.6 7.19 6.2 6.22 5.4 5.76 3.9 5.37 2.6 5.67 -0.6 6.34
6-7 10.3 10.01 9.6 8.57 8.0 8.22 6.8 7.39 5.6 6.50 4.8 5.91 3.7 5.47 2.8 5.65 1.7 5.93
7-8 10.1 8.26 8.9 8.36 7.5 7.90 6.4 6.65 5.2 6.04 3.9 5.54 2.8 5.62 1.6 6.21
8-9 6.7 7.93 5.1 7.39 4.1 6.48 2.9 5.70 1.7 5.51 0.4 6.22

9-10 3.7 6.94 3.3 6.96 3.0 6.60
Note: Bold italized  entries indicate  250-299 students

190-199180-189 200-209 210-219

Table 3a.  Means and standard deviations of spring-to-spring achievement growth in 
Reading by grade level and initial RIT block

220-229 230-239 240-249140-149 150-159 160-169 170-179

Grd
2-3 285 1186 1573 2830 3963 4201 2973 890
3-4 988 1674 3258 6813 10598 13236 8427 2626 562
4-5 468 886 2006 4525 8437 13446 13247 6983 1448
5-6 491 1053 2567 5626 10346 13979 10825 3900 551
6-7 265 607 1699 3839 8167 13261 14273 7281 1290
7-8 356 935 2208 5172 9379 12951 8629 1954
8-9 370 1092 2031 3176 2348 620

9-10 282 558 428

240-249

Table 3b.  Number of students used in the calculation of spring-to-spring growth 
estimates in Reading by grade level and initial RIT block

140-149 150-159 160-169 170-179 230-239180-189 190-199 200-209 210-219 220-229
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Grd Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
2-3 17.9 10.09 14.9 9.58 14.1 8.99 13.2 7.56 12.6 6.70 11.0 6.29 9.7 6.48
3-4 17.2 9.89 14.0 9.74 12.5 8.42 10.8 7.42 9.6 6.63 8.9 6.42 8.5 6.57 8.4 6.70 7.6 7.19
4-5 13.9 9.58 12.0 8.30 10.0 7.50 9.4 6.74 9.1 6.45 9.3 6.28 9.5 6.22 8.8 6.31 8.2 6.36
5-6 8.7 8.44 7.6 7.79 6.1 7.40 6.1 6.97 6.5 6.70 6.9 6.50 7.5 6.59 6.7 6.67 4.3 7.03
6-7 9.7 8.52 7.7 7.57 6.0 6.91 6.2 6.77 7.0 6.42 7.3 6.32 8.0 6.47 7.6 6.38 6.3 7.11 4.0 8.14
7-8 8.1 7.71 7.0 7.25 8.0 7.80 8.4 7.25 8.8 7.05 9.1 6.75 8.5 6.93 7.3 7.41 4.1 8.06
8-9 10.9 12.53 11.9 10.80 11.2 9.31 10.4 8.08 7.2 7.32 3.6 7.68 0.3 8.48

9-10 7.7 9.90 3.8 7.84 1.1 7.66 -1.8 8.61
Note: Bold italized  entries indicate  250-299 students

Table 4a.  Means and standard deviations of spring-to-spring achievement growth in 
Mathematics by grade level and initial RIT block

150-159 160-169 170-179 180-189 190-199 200-209 210-219 220-229 230-239 240-249 250-259 260-269

Grd
2-3 358 1136 3085 5620 5331 2726 665
3-4 258 723 2577 6267 12313 15148 8997 2530 450
4-5 317 1157 3212 7831 13745 13763 7228 2188 448
5-6 518 1593 4277 9291 13318 12204 6743 2569 498
6-7 359 1139 3094 6791 10724 12488 9967 5307 1862 361
7-8 659 1954 4036 6382 8842 9109 6595 3498 1049
8-9 496 1063 1934 2770 3093 1852 749

9-10 446 1139 1618 819

230-239 240-249 250-259 260-269

Table 4b.  Number of students used in the calculation of spring-to-spring growth 
estimates in Mathematics by grade level and initial RIT block

150-159 160-169 170-179 180-189 190-199 200-209 210-219 220-229
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Models for determining individual student growth targets. 

 

All the models investigated yielded a prediction of each student�s final term RIT score in the subject 

area being considered.  For Cohorts A and B, this was spring 2002, for Cohort C it was spring 2001.  

Individual student prediction residuals (observed score � predicted score) were used as the basis for 

comparing the models.  The models differed in the way the available data (prior to the final term) were 

treated and combined with a growth estimate to arrive at a prediction.  Models based on mean z-score 

status were the only models not to include an explicit estimate of growth.  Some models used growth 

norm references from the 2002 NWEA norming study.  One model used no prior achievement data but 

only the mean observed growth of same grade-level students from the norms study.  A second model 

used only the observed RIT score from the spring prior to the final (predicted) term and the mean 

observed growth of students who achieved a similar RIT score at the same grade level from the norms 

study.  All other models used all prior RIT scores from a student�s record to arrive at a growth 

estimate for the student.  Some used the scores directly while others relied on modeling these scores to 

�true� score estimates using linear modeling (LM).  Stated more formally, the models are as follows: 

Mean grade level growth  (MGLG): 

Ŷg+1 = RITgi + µg,   

 Where RITgi is the observed RIT score for student i in grade g, the final observed grade; µg is 
the mean growth of students in the norms study going from grade g to g+1. 

 

Mean RIT block growth  (MRBG): 

Ŷg+1  = RITgi + µRB.g   

 Where RITgi is the observed RIT score for student i in grade g, the final observed grade; µRB 
is the mean RIT block growth of students in the norms study going from g to g+1 whose 
achievement in the final observed grade, g was in RIT block, RB.   

 

Linear Model (LM) least squares slope estimate   (LMlsSlp): 
 Ŷg+1 = RITgi  + π1i.LS 

 Where RITgi is the observed RIT score for student i in grade g, the final observed grade; π1i.LS 
is the LM least squares estimate of growth rate for student i over the entire data collection 
period. 

 

In the LMLSslp model and all the models below that include a linear model (LM) component, the 

linear model component developed was equivalent to the level 1 model of a hierarchical linear model 
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(HLM).  The level 1 model was structured as it might be posed in a study of academic achievement 

growth in a school system; that is, without predictor variables and using grade level as the time 

variable.  In contrast to a growth study, however, the time variable, grade, was �re-centered� on the last 

observed grade so that it took on a value of 0 while prior grades took on negative values.  For example 

in Cohort A, grades 2, 3, and 4 became grades -2, -1, and 0 respectively used to predict grade 5 which 

took on the value of +1.  When fall scores were included in the analyses (Cohort C), the decimals .1 

and .8 were used to distinguish between fall and spring, respectively.  Centering on the final 

�observed� grade (7.8) resulted in the grades 4.1, 4.8, 5.1, 5.8, 6.1, 6.8, 7.1, and 7.8 being converted to 

-3.7, -3.0, -2.7, -2.0, -1.7, -1.0, -.7, and 0, respectively.  All models that included linear components 

were estimated using HLM5 (Raudenbush, Bryk, Cheong & Congdon, 2001). 

It should also be noted that the Cohort C data were analyzed using a linear and a non-linear (quadratic) 

model in order to evaluate best model fit.  These analyses supported the use of a linear model over a 

non-linear model for both Reading and Mathematics using spring only and fall and spring data.   

 Linear Model (LM) empirical Bayes slope estimate  (LMeBSlp):   

 Ŷg+1 = RITgi  + π1i.EB 

 Where RITgi is the observed RIT score for student i in grade g, the final observed grade; π1i.EB is 
the LM empirical Bayes estimate of growth rate for student i over the data collection period. 

 
 Linear Model (LM) least squares status estimate with RIT block growth  (LMlsSt+MRBG): 

 Ŷg+1 = π0i.LSg + µRB.g 
 Where π0i.LSg is the LM least squares estimate of the status for student i, in grade g, the final 

observed grade; µRB.g is the mean growth of students in the norms study going from grade g to 
g+1 whose achievement in grade, g, was in RIT block, RB.   

 

 Linear Model (LM) empirical Bayes status estimate with RIT block growth  
(LMeBSt+MRBG): 

 Ŷg+1 = π0i.EB + µRB.g 
 Where π0i.EB is the LM empirical Bayes estimate of the status for student i in grade g, the final 

observed grade, g; µRB.g is the mean growth of students in the norms study going from grade g 
to g+1 whose achievement in grade, g, was in RIT block, RB.   

 
 Full Linear Model (LM) least squares status and growth rate estimates  (FLMls): 

 Ŷg+1 = π0i.LS + π1i.LSgti + eti 

 Where π0i.LS is the LM least squares estimate of the status for student i when the grade metric, gti 
= 0; π1i.LS is the LM least squares estimates of the growth rate for student i over the data 
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collection period; eti is error.  The final observed grade, g, was set to g = 0, and all prior grades 
were reset according to g-1 = -1, g-2 = -2, and so on.    

 
 Full Linear Model (LM) empirical Bayes status and growth rate estimates  (FLMeB): 

 Ŷg+1 = π0i.EB + π1i.EBgti + eti 

 Where π0i.EB is the LM empirical Bayes estimate of the status for student i when the grade metric, 
gti = 0; π1i.EB is the LM least squares estimates of the growth rate for student i over the data 
collection period; eti is error.  The final observed grade, g, was set to g = 0, and all prior grades 
were reset according to g-1 = -1, g-2 = -2, and so on. 

 
 Mean of norms-based z scores  (MnbZ): 
 

 Ŷg+1 =  Zg+1 =                                                         * σg+1 + µg+1 

 Where z for the predicted grade, g+1, is the mean of norm-based z�s from all prior tests using the 
respective means and standard deviations, as found in the norms study, from the earliest grade, 
g-n, to the final observed grade, g, and σg+1 and µg+1 are the standard deviation and the mean, 
respectively of the grade g+1 from the norms study. 

 

 Mean of norms-based z scores with last observed score double weighted  (MnbZ*): 

 

 Ŷg+1 =  Zg+1 =                                                          * σg+1 + µg+1 
 

 Where z for the predicted grade, g+1, is the mean of norm-based z�s from all prior tests using the 
respective means and standard deviations, as found in the norms study, from the earliest grade, 
g-n, to the final observed grade, g which is double-weighted, and σg+1 and µg+1 are the standard 
deviation and the mean, respectively of the grade g+1 from the norms study. 

 

  Mean of locally based z scores  (MlbZ): 

 

 Ŷg+1 = Zg+1 =                                                          * sdg+1 + X g+1 

 Where z for the predicted grade, g+1, is the mean of locally based z�s from all prior tests using the 
means and standard deviations calculated from scores in the earliest grade, g-n, to the final 
observed grade, g, and sdg+1 and X g+1 are the local historical standard deviation and the mean, 
respectively of grade g+1.  

 

   

 

 

Zg-n  . . . +  Zg-3 +  Zg-2  +  Zg-1  +  2Zg 
 n + 1

Zg-n  . . . +  Zg-3 +  Zg-2  +  Zg-1  +  Zg
  n

Zg-n  . . . +  Zg-3 +  Zg-2  +  Zg-1  +  Zg
 n
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 Mean of locally based z scores with last observed score double weighted  (MlbZ*): 

 

 Ŷg+1 = Zg+1 =                                                             * sdg+1 + X g+1 

 

 Where z for the predicted grade, g+1, is the mean of locally based z�s from all prior tests using the 
means and standard deviations calculated from scores in the earliest grade, g-n, to the final 
observed grade, g, which is double-weighted, and sdg+1 and X g+1 are the local historical 
standard deviation and the mean, respectively of grade g+1. 

 
All models except for the last two were applied to the cases in all three cohorts.    All data from each 

set were used, with the last score used in prediction (referred to above as the last observed grade, g) 

being the score from the spring one year prior to the spring score being predicted (i.e., grade g+1).  

This means that for Cohort C, where the RIT being predicted was for grade 8, the fall grade 8 RIT was 

not used in any of the prediction models.  The last two models, locally-based z scores, could only be 

applied to the Cohort A data for two reasons:  a) data for Cohort C were collected across districts, thus 

common local means and standard deviations were not available, and b) no historical local data were 

available to supply the means and standard deviations for the predicted grade for Cohort B, grade 6. 

 

Analysis. 

Residuals at the individual student level (Yg+1 � Ŷ g+1) yielded from each of the models were the focus 

of analysis.  For each set of predictions from each cohort, several statistics were computed to help 

describe the resulting distribution of residuals.  These included the mean residual, the root mean 

square error, and the percent of the cases for each model that yielded the minimum residual across all 

models.  To assess how well each model�s uniformity in prediction across the measurement range, 

Pearson product-moment correlations were calculated between the residuals and the last observed RIT 

score.  Positive correlations indicate that higher scores will tend to be under-predicted and lower 

scores will tend to be over-predicted.  Negative correlations indicate the opposite tendencies.  The 

extent of these deviations depends on the magnitude of the correlation.  In addition, the percent of 

cases for each model that yielded a predicted score within a reasonable standard error band of the 

observed score was calculated.  �Reasonable�, here, was considered to be ±3.3 for Reading and ±3.2 

for Mathematics.  These values were based on examinations of the error levels observed for well 

targeted tests � raw score 45-65 percent correct.  Comparisons between methods were also maintained 

at the descriptive level.  More specifically, plots of residuals by the final (observed) score were 

Zg-n  . . . +  Zg-3 +  Zg-2  +  Zg-1  + 2Zg 
  n + 1 
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developed to form a more complete understanding of the nature of prediction results of the various 

models.   

 

Results 

Cohorts A and B. 

Table 5 contains the results of the five basic descriptive statistics for Cohorts A and B for both 

Reading and Mathematics.  The asterisks in Table 5 designate the most favorable value for the 

particular descriptive statistic across all models.  Similarly, the superscript italic 2�s designate the next 

most favorable value for the statistic.  For example, in the Cohort A � Reading results, the MlbZ* 

model was found to have the most favorable mean residual (minimum absolute) value (.18), while the 

MRBG model was the next most favorable (-.18).      

When examining Table 5 within each content area, several commonalities appear.  Initially we see that 

the linear models that included the slope parameter (LMlsSlp, LMeBSlp, FLMls, and FLMeB) in the 

prediction, tended to result in an over-prediction bias indicated by large negative values of the mean 

residual.  This unfavorable outcome was evident in each of the other indicators.  Models involving 

mean RIT block growth (MRBG, LMlsSt+MRBG, and LMeBSt+MRBG) resulted in somewhat more 

favorable results across indicators for Cohort A in both Reading and Mathematics.  In fact the linear 

model using empirical Bayes estimates of status with RIT block growth as estimates of rate 

(LMeBSt+MRBG) produced the most favorable results in Reading.  In Mathematics, however, the 

model using local-based z scores (MlbZ and MlbZ*) produced the most favorable set of results even 

though results generally under-predicted performance.   

For Cohort B, linear models that included the estimation of grade status from a linear model in 

combination with RIT block growth means as estimates of rate of growth, LMlsSt+MRBG (for 

Reading) and LMeBSt+MRBG (for Mathematics) yielded the most favorable set of indicators.  In 

terms of percentage of predictions within the 1SEM bands established, the norm-based z-score models 

(MnbZ and MnbZ*) were both favorable for Reading.  In Mathematics, the simple models using only 

mean grade level growth (MGLG) and RIT block growth (MRBG) were also quite favorable.  In both 

cases, however, the correlations between the residual and the last observed RIT score were too high 

for these models to be considered across the measurement range. 

 



 13
Table 5. Achievement Status Residuals by Method - Cohorts A and B 

 Grades 2-4 Spring Data Predicting Grade 5 Spring Status (Cohort A) 
 Reading Mathematics  

Model Description 
Mean 
resid. RMSE  rŶres.g 

% with 
min. 
resid. 

% ±1 
SE 

Mean 
resid. RMSE  rŶres.g 

% with 
min. 
resid. 

% ±1 
SE  

MGLG Obs end Grd Status + Mean Gth -0.45  7.527  -.419  5.6  38.6 0.48  6.640 -.130  4.6  37.0  

MRBG Obs end Grd Status + RIT Blk Mean Gth -0.18 2 7.018  -.189  8.1  41.1 0.37 2 6.582 -.109  4.2  37.3  

LMlsSlp Obs end Grd Status + LM OLS est. Slope -2.74  9.879  -.419  7.6  28.5 -1.95  9.041 -.192  7.4  27.6  
LMeBSlp Obs end Grd Status + LM EB est. Slope -2.74  8.136  -.406  6.7  34.5 -1.95  6.807 -.046  9.6  37.9  
LMlsSt+MRBG LM OLS est end Grd Status + RIT Blk Mean Gth -0.51  6.885  -.144  7.0  41.8 0.04 * 6.386 -.092 2 6.5  38.2  

LMeBSt+MRBG LM EB est end Grd Status + RIT Blk Mean Gth -0.51  6.491 * .066 * 11.6 2 42.6 0.04 * 6.256 .288  8.2  40.7  

FLMls Full LM OLS est end Grd Status & Slope -3.07  9.776  -.389  6.7  27.8 -2.28  9.042 -.178  9.6  26.7  
FLMeB Full LM EB est end Grd Status & Slope -3.07  7.965  -.231  11.6  37.3 -2.28  6.321 .345  17.3 * 33.7  
MnbZ Mean obs norm-based means, sd to predict z 1.32  6.864  -.216  18.0 * 42.9 3.07  6.695 -.236  16.5 2 35.4  
MnbZ* Mean obs norm-based means, sd (last double 

weighted) to predict z 1.14  6.740  -.277  5.5  42.6  2.68  6.301  -.264  7.2  37.6  

MlbZ Mean obs local-based means, sd to predict z 0.19 6.669 -.108 2 6.3 45.2 2 1.71 6.148 2 -.030 * 4.2 40.8 
2 

MlbZ* Mean obs local-based means, sd (last double 
weighted) to predict z 0.18 * 6.538 2 -.162  5.2  45.8 * 1.70  5.992 * -.110 4.2  41.3 * 

 Grades 3-5 Spring Data Predicting Grade 6 Spring Status (Cohort B) 
 Reading Mathematics  

MGLG Obs end Grd Status + Mean Gth 0.08 2 6.266  -.327  8.4  41.2  0.18 2 6.014  -.186  11.5  42.0 2 

MRBG Obs end Grd Status + RIT Blk Mean Gth 0.08 2 5.966  -.076  5.4  41.7  -0.15 * 6.078  -.224  4.6  41.2  
LMlsSlp Obs end Grd Status + LM OLS est. Slope -2.21  7.981  -.341  9.6  34.0  -3.28  7.849  -.339  6.2  29.0  
LMeBSlp Obs end Grd Status + LM EB est. Slope -2.21  6.311  -.290  9.2  39.3  -3.28  6.440  -.297  8.0  33.0  
LMlsSt+MRBG LM OLS est end Grd Status + RIT Blk Mean Gth 0.01 * 5.953 2 -.014 * 7.7  44.9 * -0.33  5.919  -.181  9.3  41.5  
LMeBSt+MRBG LM EB est end Grd Status + RIT Blk Mean Gth 0.01 * 6.171  .238  12.5 2 43.1  -0.33  5.705 2 .035 * 11.5  44.2 * 
FLMls Full LM OLS est end Grd Status & Slope -2.28  8.086  -.290  8.1  34.0  -3.46  7.798  -.304  7.1  27.9  
FLMeB Full LM EB est end Grd Status & Slope -2.28  5.850 * .016 2 16.7 * 43.9  -3.46  5.651 * -.062 2 15.4 2 37.2  
MnbZ Mean obs norm-based means, sd to predict z 1.70  6.186  -.103  16.7 * 41.7  2.20  6.462  -.200  18.2 * 35.8  
MnbZ* Mean obs norm-based means, sd (last double 

weighted) to predict z 1.41 5.956 -.155  5.7 44.2
2 

1.82 6.113 -.254 8.4 38.9  
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Cohort C. 

Cohort C results are contained in Table 6.  The upper part of the table presents residuals based only on 

spring data while the lower part presents residuals based on both fall and spring data.  For both 

Reading and Mathematics, the additional fall data had only minimal effect on bringing the mean 

residual closer to zero.  For Reading, the inclusion of fall data into the two full linear models (FLMls 

and FLMeB), the actually introduced more bias into the predictions.  However, the large over-

prediction levels associated with linear models involving a slope parameter that were noted in the 

Cohorts A and B data were not as pronounced in the for Reading and were virtually absent for 

Mathematics.   

Variance (RMSE) in the residuals of the models using linear estimates (LMlsSlp, LmeBSlp, 

LMlsSt+MRBG, LMeBSt+MRBG, FLMls, & FLMeB) was, in general, more favorable when both fall 

and spring data were used.   This was the case for both Reading and Mathematics.  Predictions in 

Reading using fall and spring and spring only data had the least variance when the full empirical 

Bayes linear model (FLMeB) and the linear model using empirical Bayes estimates of end grade status 

and RIT block mean growth for the rate estimate (LmeBSt+MRBG).  In Mathematics, the linear 

model estimating end grade status using ordinary least squares and RIT Block mean for the rate 

estimate (LMlsSt+MRBG) and the simple observed end grade status plus mean RIT block growth 

(MRBG) resulted in the lowest levels of residual variance.       

The linear models using empirical Bayes estimates of end grade status resulted in the most accurate 

(i.e., the highest percentage of cases within ±1 SEM) predictions in Reading when fall and spring data 

were used.  For the spring only data, the full linear model using empirical Bayes estimates (FLMeB) 

resulted in the most desirable statistics overall.  For the fall and spring data, the model using empirical 

Bayes and the model using ordinary least squares estimates of end grade status plus mean RIT block 

growth can be seen as the most.  It lead to the most accurate predictions overall.   

Prediction accuracy in Cohort C mathematics was highest for the simple observed end grade status 

plus mean RIT block growth model (MRGB) was found to be the most effective overall, even though 

some of its indicator statistics were not optimal.  This was the case for both the spring only and the fall 

and spring datasets.  However, the two linear models that used RIT block growth as the estimate of 

rate yielded accuracy percentages that approached that of the MRBG model in the fall and spring 

dataset.  The norms-based z-score models yielded the least accurate predictions by far, particularly for 

the fall and spring dataset.    
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Table 6.  Achievement Status Residuals by Method - Cohort C  

 Grades 4-7 Spring ONLY Data Predicting Grade 8 Spring Status  

 Reading Mathematics  

Model Description 
Mean 
resid. RMSE rŶres.g 

% with 
min. 
resid. 

% ±1 
SE  

Mean 
resid. RMSE rŶres.g 

% with 
min. 
resid. 

% ±1 
SE  

MGLG Obs end Grd Status + Mean Gth 1.26 6.280 -.372  4.2 36.9 0.06 2 6.772 -.095 7.0 42.2 * 

MRBG Obs end Grd Status + RIT Blk Mean Gth 1.54 5.913 -.154  9.2 43.0 -0.10 6.674 * -.013 * 11.3 39.9 2 

LMlsSlp Obs end Grd Status + LM OLS est. Slope 0.44 2 7.256 -.370  8.2 35.0 0.06 2 7.844 -.358 10.5 35.1  

LMeBSlp Obs end Grd Status + LM EB est. Slope 0.44 2 6.454 -.344  6.1 39.8 0.06 2 7.239 -.336 7.2 37.2  

LMlsSt+MRBG LM OLS est end Grd Status+ RIT Blk Mean Gth 0.78 5.551 -.047 * 6.9 46.1 -0.05 * 6.720 2 .036 7.2 38.6  

LMeBSt+MRBG LM EB est end Grd Status+ RIT Blk Mean Gth 0.78 5.444 2 .154  15.9 * 48.6 2 -0.05 * 6.817 .168 16.9 * 38.5  

FLMls Full LM OLS est end Grd Status & Slope -0.31 * 6.882 -.295  14.8 2 36.9 0.11 7.936 -.313 11.3 32.7  
FLMeB Full LM EB est end Grd Status & Slope -0.31 * 5.334 * -.088 2 14.5 48.7 * 0.11 6.858 -.174 7.8 38.6  

MnbZ Mean obs norm-based means, sd to predict z 2.02 5.685 -.142  14.7 44.6 4.55 7.492 .074 13.3 2 28.8  

MnbZ* Mean obs norm-based means, sd (last double weighted) 
to predict z 1.97 5.560 -.192  5.5 45.1 3.90 7.074 .019 2 7.6 31.3  

 Grades 4-7 Fall and Spring Data Predicting Grade 8 Spring Status  
 Reading Mathematics  

MGLG Obs end Grd Status + Mean Gth 1.26 6.280 -.372  5.6 36.9 0.06 2 6.772 -.095 14.1 42.2 * 
MRBG Obs end Grd Status + RIT Blk Mean Gth 1.54 5.913 -.154  11.8 43.0 -0.10 6.674 2 -.013 * 14.2 2 39.9  

LMlsSlp Obs end Grd Status + LM OLS est. Slope -0.21 * 6.853 -.357  6.7 37.7 -0.47 7.447 -.344 9.8 36.0  
LMeBSlp Obs end Grd Status + LM EB est. Slope -0.21 * 6.477 -.341  7.9 39.7 -0.47 7.160 -.328 7.6 38.1  
LMlsSt+MRBG LM OLS est end Grd Status+ RIT Blk Mean Gth 0.32 2 5.443 .055 * 9.1 47.7 2 0.32 6.608 * .093  7.5 41.1 2 

LMeBSt+MRBG LM EB est end Grd Status+ RIT Blk Mean Gth 0.32 2 5.342 2 .180  12.1 49.9 * 0.32 6.687 .177 17.6 * 40.3  

FLMls Full LM OLS est end Grd Status & Slope -1.42 6.339 -.196  12.3 41.2 -0.05 * 7.369 -.253 10.7 35.8  
FLMeB Full LM EB est end Grd Status & Slope -1.42 5.301 * -.063 2 13.6 2 47.2 -0.05 * 6.746 -.160 7.7 38.9  

MnbZ Mean obs norm-based means, sd to predict z 2.00 5.693 -.092  15.1 * 45.8 5.10 7.517 .063 10.7 26.5  
MnbZ* Mean obs norm-based means, sd (last double weighted) 

to predict z 1.98 5.578 -.125  5.8 46.1 4.67 7.243 .034 2 8.7 28.7  
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Residual plots. 

Figures 1 through 4 present selected residual plots for Reading and Mathematics from the previous 

four sets of analyses (Cohorts A, B, C spring only, and C fall and spring).  Each plot shows the 

resulting residuals from the selected model in relation to the final (observed) RIT scores.  The plots 

selected for presentation were for the most parsimonious model in each set.  For contrast and for 

illustrative purposes, the least parsimonious models for the same analysis set are presented in the 

lower portion of each figure.  For purposes here, �most parsimonious� refers to the model that resulted 

in the most favorable combination of low bias, low RMSE, low rŶresid.RITgi, and high percent of 

predictions within ±1 SEM.   

The plots require little explanation but would benefit from pointing out a few characteristics of what 

we would expect to see in a parsimonious model.  These include: 

1. A trend line that runs through the range of the plot at or very close to the zero level.  

This is illustrated well in the Figure 2, Mathematics, most parsimonious plot.   

2. When there is a positive or negative trend in the residuals, the difference between the 

most positive and most negative would be contained in a very narrow band.  Figure 1, 

Reading, most parsimonious illustrates this.   

3. Vertical scatter around the zero point would be compact, with the vast majority of 

residuals falling inside a narrow range (e.g., ± 10).  Figure 2, for Mathematics, most 

parsimonious is the best example of this among the data sets. 

4. Scatter around the zero point trend line would be vertically symmetrical across the 

entire measurement range of the RIT scores.  None of the figures represents this 

particularly well, but Figure 2 for Mathematics, most parsimonious comes closest.  Lack 

of symmetry is an indication that the model differentially accurate across the measurement 

scale.  

Cohort A.  The linear model with empirical Bayes estimates of end grade score plus RIT block growth 

was chosen as the most parsimonious for Reading.  The plot for Reading (Figure 1) shows better 

predictions for scores above 200.  More serious over-predictions (i.e., residuals < -10) were evident.  

For Mathematics, the linear model using ordinary least square estimates of grade status plus RIT block 

growth was selected.  Again, the most discrepant residuals appeared at about RIT 225 and below..   
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Cohort B.  Predicting Reading using linear least squares to estimate end grade and RIT block mean to 

estimate rate was selected as the most parsimonious model.  (see Figure 2)  This model resulted in a 

very slight bias toward under-prediction.  Discrepant over-predictions (< -.10) were distracting but 

relatively infrequent.  The empirical Bayes version of the same model was selected as the most 

parsimonious for Mathematics.  Its pattern of residuals was fairly symmetric around zero and 

generally clustered within the �10 to +10 RIT range. 

Cohort C, spring only data.   The full linear model using empirical Bayes estimates was selected as the 

most parsimonious model for the Reading predictions.  Even though this model resulted in a slight 

over-prediction bias (mean residual = -.31), its more severe under-predictions (residuals >10) were 

more common across the entire measurement range.  This was similar to the most parsimonious model 

selected for Mathematics, the simple observed end grade plus RIT block growth model.  Its more 

severe under-predictions occurred for scores in the 185-265 RIT range while its more severe over-

predictions occurred in the 200-280 RIT range.   

Cohort C, fall and spring data.  The most parsimonious model for Reading was considered to be the 

linear model using ordinary least squares estimates for end grade status plus RIT block growth for a 

rate of growth estimate.  The vast majority of its predictions fell within a 20 point band around zero.  

However, the severe over-predictions occurred for RIT scores in the 175-245 while the severe under-

predictions were in the 190-255 RIT range of last observed scores.  The model selected as the most 

parsimonious for Mathematics was the same as the one selected for the Cohort C, spring only data set.  

The comments made there apply to the fall and spring data set.  
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Figure 1.  Residual plots of the most and least parsimonious models for Reading and Mathematics for Cohort A

Reading Mathematics
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Reading Mathematics

Figure 2.  Residual plots of the most and least parsimonious models for Reading and Mathematics for Cohort B
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Figure 3.  Residual plots of the most and least parsimonious models for Reading and Mathematics for Cohort C, Spring Data Only

Reading Mathematics
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Reading Mathematics

Figure 4.  Residual plots of the most and least parsimonious models for Reading and Mathematics for Cohort C, Fall & Spring Data

Linear Model OLS est End Grd + RIT Blk Growth

-40

-30

-20

-10

0

10

20

30

160 170 180 190 200 210 220 230 240 250 260 270

Last Observed RIT

R
es

id
ua

l (
O

bs
-P

re
d)

Obs End Grd + Grd Level Growth

-40

-30

-20

-10

0

10

20

30

160 170 180 190 200 210 220 230 240 250 260 270

Last Observed RIT

R
es

id
ua

l (
O

bs
-P

re
d)

Obs End Grd + RIT Blk Growth

-40

-30

-20

-10

0

10

20

30

40

50

160 170 180 190 200 210 220 230 240 250 260 270 280 290

Last Observed RIT

R
es

id
ua

l (
O

bs
-P

re
d)

Mean Obs Norms-based z

-40

-30

-20

-10

0

10

20

30

40

50

160 170 180 190 200 210 220 230 240 250 260 270 280 290

Last Observed RIT

R
es

id
ua

l (
O

bs
-P

re
d)

M
os

t p
ar

si
m

on
io

us
L

ea
st

 p
ar

si
m

on
io

us



 22

Discussion 

This study was undertaken to evaluate models that could be used to set single-year individual student 

academic growth targets.  Multiple terms of individual student reading and mathematics test results 

were analyzed to predict each student�s final status score in each subject.  Test records from over 5300 

students in three cohorts were used; two cohorts of roughly 670 to 750 students and one cohort of 

roughly 4000 students.  The two smaller cohorts were from the same school district; the larger one was 

from the 2002 NWEA Norming Study and represented nine school districts.  Three terms of spring 

data were used to predict scores in a fourth spring term for the two smaller cohorts.  For the larger 

cohort, four terms of fall data and four terms of spring data were used to predict scores in a fifth spring 

term.  Also, the four terms of spring data were used independently to predict scores in the fifth spring 

term.   

The twelve models used to make predictions varied in the: a) treatment of data prior to the last 

�observed� score, b) nature of the last score [observed or estimated], and c) estimate of rate of growth 

used [linear, RIT block growth, ignored in the z-score models].  Of the 12 models applied to each of 

the eight data sets, five emerged as yielding the most parsimonious set of predictions.  The predictions 

within ±1 SEM of the observed scores ranged from roughly 40 to 50 percent for these models.  

Corresponding percentages for the six least parsimonious models ranged from roughly 11 to 37 

percent. 

The prediction task here was intentionally restricted to using only available achievement test data.  

Were a traditional modeling or forecasting approach taken, additional data such as school or district 

characteristics (e.g., class size, curricular differences), or student characteristics (e.g., gender, 

ethnicity, level of poverty, English language status) could have been added to help model additional 

variance.  For example, recalling that Cohort C was made of data from nine school districts, it is quite 

possible that a good portion of the variability in the Mathematics data could have been attributable to 

differences in mathematics course taking patterns between these districts.  Taking such differences 

into account, may have improved prediction accuracy.  However, even though they may improve 

prediction accuracy, these variables would typically not be feasible to include.  In all likelihood they 

would be viewed as setting differential growth targets (expectations) based on school and/or student 

characteristics; current collective thought cannot reconcile this practice with the demands of the 

standards movement.       

In what might be considered a prophetic announcement of the results of this study, George E.P. Box 

(as cited in Sloane & Gorard, 2003), once opined, �All models are wrong, but some are useful.�  Even 
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though the term �parsimonious� has been used here to label particularly attractive sets of results for a 

model, the term could only be applied as a relative one.  When the most parsimonious model 

accurately predicted (within 1 SEM) student status slightly less than 50 percent of the time, we can 

safely conclude that all these models are wrong, at least they are less accurate than we would like.  

However, this does not preclude the possibility that some of the models or model components may 

prove useful under specific conditions.  What proves useful, may well depend on the characteristics of 

the data available to model.  If a grade-independent scale can be assumed, the important characteristics 

for the models used here reduce to the quantity of data, the number of waves of data with common 

student test results, and variability in those data. 

A district that has only one or two waves of same-student data, could in the absence of stable growth 

norms, assign individual growth targets based on the grade level differences in status norms.  This is 

consistent with current standards-based accountability systems; all students in a grade would be 

assigned the same growth targets.  Considering the potential disruption this could cause, it is not a 

recommended approach.  A more promising approach would be to gather one or two additional waves 

of data and then investigate one of the two local-based mean z-score models used with Cohort A.  

These models should work well when the number of students per grade level is about 500 or more and 

the score distributions are approximately normal.  When grade level growth norms are available, these 

could be used immediately, though for individual student growth targets they are only a slight 

improvement over using grade level differences in status norms.  At the individual student level, 

growth norms that are segmented based on initial score (e.g., RIT block mean growth), will typically 

result in more reasonable growth targets.   

When three or four waves of achievement data are available for making predictions, the range of 

options increases.  Linear models that provide an estimate of the last (observed) score combined with a 

mean from segmented growth norms as a substitute for growth rate should be considered.  Results 

from this study demonstrated that with short time series (e.g., 3 waves) the slope estimates of the 

linear models had low-moderate reliability (viz., .36 and .087 for Reading and Mathematics, 

respectively in Cohort A; and .12 and .31 for Reading and Mathematics, respectively in Cohort B).  

Use of the RIT block means in place of the rate estimates from the linear models, improved accuracy 

over the full linear models.  In addition to the more complex models, the local-based mean z-score 

model could be explored when the conditions noted previously hold. 

With four or more waves of data, consideration can be given to the full linear models.  However, the 

results here demonstrate that more waves of data don�t always yield the least biased or most accurate 

predictions, even though they are likely to be among the most accurate.  A pattern of inconsistent term 
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level variances for a cohort can be considered a sign that linear models, or at least the linear models 

used here, may not lead to the most accurate results (see Cohort C).   

Explicitly including individual growth into a district or state level accountability system has the 

potential to expand the capability of the system by making it more comprehensive and more sensitive 

to the full range of academic change.  To realize this potential, the expectations for academic change 

need to be generated from the perspective of the individual student.  Research in this area is still 

immature and more research is clearly needed.  However, even at this stage there is sufficient evidence 

to counter the unfortunate practice of declaring group growth targets in the absence of reasonable 

expectations for individual student growth � a practice that has been encouraged by status oriented 

accountability systems.         
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