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Abstract: It is a commonly accepted assumption by educational researchers
and practitioners that an underlying longitudinal achievement construct exists
across grades in K-12 achievement tests. This assumption provides the
necessary assurance to measure and interpret student growth over time.
However, evidence is needed to determine whether the achievement construct
remains consistent or shifts over grades or time. The current investigative study
uses a multiple-indicator, latent-growth modelling (MLGM) approach to
examine the longitudinal achievement construct and its invariance for the
measures of academic progress® (MAP®), a computerised adaptive test in
reading and mathematics. The results of the analyses from ten states suggest
that with repeated measures, the construct of both MAP reading and
mathematics remained consistent at different time points. The findings support
the achievement construct’s invariance throughout different grades or time
points and provide empirical evidence for measuring student growth.
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1 Introduction

Most current achievement tests can be characterised by their test algorithm and
administration platforms. Two major testing algorithms are commonly employed in
achievement tests: one is the linear test, in which all students answer all test items.
Another is the computerised adaptive test (CAT), in which different students may get
different items. During adaptive testing, each item that administrates to an individual
student adapts to his or her provisional achievement ability by selecting the most
appropriate item difficulty. The most common platforms for achievement tests are paper
and pencil and computer. When the linear test algorithm is used in computer platforms,
the test is called a ‘computer-based test’; when the CAT algorithm used in computer
platforms, the test is a ‘CAT’.

For decades, achievement tests delivered either in linear or CAT algorithms have
been constructed to provide formative or summative measures about students’
achievement status at grade level (for example, Amy’s third-grade mathematics test score
in Fall 2005), academic growth over time from longitudinal data (for example, Amy’s
third-grade mathematics test score in Fall 2005 and her seventh-grade mathematics score
in Fall 2009) or achievement across grades from cross-sectional data (for example,
Amy’s third-grade, Johnny’s fourth-grade and Tim’s fifth-grade mathematics scores in
Fall 2005) (Hamilton et al., 2008; Patz, 2007; Smith and Yen, 2006; Yen, 2007, 2009). In
recent educational reforms, assessing individual students’ growth has been required for
high-stakes decisions by state and federal education policy, such as the race to the top
initiatives (RTTT) (U.S. Department of Education, 2009). These requirements have put
tremendous pressures on states and testing companies to develop high-quality and
high-utility assessment systems. As RTTT states: “(Student) growth may be measured by
a variety of approaches, but any approach used must be statistically rigorous and based
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on student achievement data, and may also include other measures of student learning in
order to increase the construct validity and generalizability of the information” [U.S.
Department of Education, (2009), p.37812]. CATs are considered more effective than
linear tests for measuring individual students’ growth over time (Way et al., 2010). The
advantages of CATs over linear tests include shorter tests, immediate student score
reporting, higher reliability and measurement accuracy (Kingsbury and Weiss, 1983;
Lord, 1977; Thissen and Mislevy, 1990), cost savings and multiple testing opportunities
for formative and interim assessments (Way, 2006).

Measuring individual student growth has two fundamental requirements (Bergman
et al., 1991; Betebenner and Linn, 2010; Doran and Cohen, 2005; Linn, 1993; Mislevy,
1992; Williamson et al., 1991). First, there are multiple measures of achievement
construct along the growth trajectory. Second, the achievement construct should be
invariant from different grade levels or points in time.

This means that in order to measure student growth, achievement tests must satisfy
two necessary conditions: First, there must be a continuous construct that the tests are
designed to measure over grades or time; i.e., the tests are scored on a longitudinal
construct. Second, the construct measured by multiple tests must be invariant, or
constant, across grade levels and time; i.e., the construct does not shift over grade levels
or time (Wang and Jiao, 2009).

Many researchers have investigated whether achievement tests satisfy these two
assumptions from the perspectives of content and vertical scaling (Cizek, 2005; Linn,
2001; Lissitz, 2006; Martineau et al., 2007; Wang and Jiao, 2009; Wise, 2004). The study
by Wang and Jiao (2009) provided empirical evidence to support construct invariance
across grades for a vertically scaled norm-referenced test. However, few studies examine
the longitudinal achievement construct and construct invariance across grade levels and
points in time with CAT.

Achievement construct invariance is an important validity issue. According to the
Standards for Educational and Psychological Testing [American Educational Research
Association (AERA), American Psychological Association (APA) & National Council on
Measurement in Education (NCME), 1999], validity is the most important consideration
in test development and evaluation. Validity refers to the degree to which empirical
evidence and theoretical rationale support the inferences and actions based on test scores
(Messick, 1989) or the degree to which evidence and theory support the interpretations of
test scores for the proposed use of tests (American Educational Research Association,
American Psychological Association & National Council on Measurement in Education,
1999). Interpretations of test results that measure achievement ability or traits are subject
to many validity threats, including two major threats: construct-under representation
(CUR) and construct-irrelevant variance (CIV) (Messick, 1984). The construct of a test is
a theoretical representation of the underlying traits, concepts, attributes, processes or
structures the test is designed to measure, and it directly relates to test validity (Cronbach,
1971; Messick, 1989). Five sources of validity evidence specified in the Standards
include

a test content
b  response process

¢ internal structure
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d relations to other variables
e consequences of testing.

CUR and CIV could be identified in the process of test development, administration and
use of test results. This study focuses on validity evidence of internal structure and the
invariance of the internal structure of achievement tests across grades and/or over time.

Factorial validity can be a valuable component of validity evidence (Guilford, 1946;
Messick, 1995). Although evidence of a test’s internal structure is routinely reported in
many test technical reports or manuals from state assessment programmes and test
companies, construct invariance is rarely addressed from a longitudinal perspective when
test results are routinely used to determine student growth. Many test publishers have
used the first-order latent growth curve model (FLGM) (Bollen and Curran, 2006;
McArdle et al., 2009; Muthén, 1995) in longitudinal studies of student growth, based on
the assumption that there is a continuous test construct. Unfortunately, little attention has
been drawn to examine the assumption in practice. The second-order latent growth
model, or the multiple-indicator latent growth model (MLGM), is rarely used to evaluate
the longitudinal construct validity for adaptive test achievement based on CAT. There are
two advantages of MLGM over FLGM (Bollen and Curran, 2006; Ferrer et al., 2008;
Muthén and Muthén, 2007; Sayer and Cumsille, 2001). First, MLGM can test, instead of
making assumptions, whether the same latent construct is measured at each point in time
or grade level. Second, it accounts for important information of the psychometric
properties on the indicators. MLGM can be used to evaluate factorial invariance across
points in time and determine whether the same latent construct is measured across time or
grade levels so as to assure that changes of test scores quantify achievement growth
rather than the shift of the achievement test construct.

FLGM uses total scores as an observable variable or indictor in the longitudinal
achievement growth analysis, while MLGM uses observed indicators either at the item
level or the cluster of items level (testlet, subtest, goal score, etc.). The choice of the level
of an indicator in MLGM or in general factor analysis has a significant effect on
evaluating the construct, because item cluster involves averaging item scores and using
summed scores as observed variables in analyses (Bandalos, 2002; Bandalos and Finney,
2001; Hall et al., 1999; Little et al., 2002; Nasser and Wisenbaker, 2003). Some reasons
to use clusters of items are to reduce the problems of non-normality, to have fewer free
parameters to be estimated compared to the number of observations and to improve
data-model fit. Arguments state that using clusters of items increases the chance of
combining items that truly measure multiple dimensions and therefore results in severe
bias. Overall, clustering items is a commonly used technique based upon theoretical
rationale.

Compared with linear tests, it is almost impossible to use indicators at the item level
for adaptive tests because each student receives different items tailored to his or her
ability. Using unique test forms with CATs makes evaluating longitudinal achievement
constructs complicated. Compared with linear tests, CATs present two major challenges
in using observable variables for MLGM. First, observable variables are different across
persons at the item level. Second, even though the observable variables are the same at
the cluster level, the context of the observable variables is different; i.e., the same subtest
score may consist of different items for the same content. One possible solution to the
first problem is to conduct a confirmatory factor analysis at the item level on the entire
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item bank. However, the drawback is the large amount of missing response data in
the dataset. For example, the missing rate for the measure of academic progress
(MAP, Northwest Evaluation Association, 2011) is around 98% for the reading and
mathematics tests. Besides, the data are very sparse, because the ratio of the test length to
the size of the item bank is about 1:50 (Wang and Harris, 2011). The commonly
used imputation method (Rubin, 1987) may statistically help solve the problem, but it
cannot deal with the missing data issue from the content perspective. Another
possible solution for improvement is to treat items as nested inside person within the
framework of generalisability theory, which provides information on parcel scores
reliability.

The purpose of this study is to investigate the longitudinal achievement constructs of
a standardised, large-scale CAT in reading and mathematics across ten states.

2  Method
2.1 Data source and participants

All data used in this study were collected from the measures of academic progress (MAP)
assessment system from Spring 2009 through Spring 2011. The MAP reading and
mathematics tests were administered to students in grades 3—10 across 50 US states. The
data analysis only focused on the ten states (Colorado, Illinois, Indiana, Kansas,
Kentucky, Michigan, Minnesota, South Carolina, Washington and Wisconsin) that
supplied the largest samples among the 50 states. For each state, the data were collected
as part of a five-wave panel design (Spring 2009/Grade 5, Fall 2009/Grade 6, Spring
2010/Grade 6, Fall 2010/Grade 7 and Spring 2011/Grade 7). Each state sampled the
corresponding population under the constraints that students must have five academic
calendar records (five-wave) from grade 5. Student demographic data is collected legally
and ethically through the Master Services Agreement with each NWEA partner. And at
no time is personally identifiable information (PII) released without the written consent
and permission of the associated partner. All data collection, storage and use in studies
meets the requirements of the Family Educational Rights and Privacy Act (FERPA, U.S.
Department of Education, 2012). Prior to each test administration, NWEA partners roster
students who will take the MAP, and it is through this rostering process that student PII is
provided (student first, last and middle name; date of birth, grade, gender and ethnicity).
This data assists in properly identifying and tracking students from one test
administration to another in order to assign the correct test scores, goal data and other
relevant test characteristics.

Although this paper does not focus on the effect of heterogeneity of samples on
parameter estimates of the MLGM, a previous study (Zhang and Wang, 2012) found
statistically significant different rates of change by gender, using across-grade cohorts
with a non-linear hierarchical linear model (HLM).

Table 1 and Table 2 list the frequency distributions and percentages of reading and
mathematics for sample states (due to limited space) across five-wave by state, gender
and ethnicity.
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Table 1 Samples of MAP reading tests for ten states
Ethnicity*
State Gender Total
1 2 3 4 5 6 7 8

Colorado F N 78 51 119 729 4 1,351 57 93 2,482
% 1.53 1.00 234 1434 0.08 26.58 1.12 1.83 48.84

M N 59 50 113 708 6 1536 52 76 2,600

% 1.16 098 222 1393 0.12 3022 1.02 150 51.16

Ilinois F N 58 754 698 2299 13 5486 220 342 9,870
% 029 377 349 1150 0.07 27.43 1.10 1.71 4935

M N 53 692 725 2320 15 5,733 259 333 10,130

% 027 346 3.63 11.60 0.08 28.67 130 1.67 50.65

Indiana F N 20 77 365 254 4,247 162 124 5,249
% 0.19 074 3.50 243 40.71 1.55 1.19 5031

M N 9 60 295 249 1 4,285 156 129 5,184

% 0.09 058 283 239 0.01 41.07 150 124 49.69

Kansas F N 189 130 226 355 8 3,236 103 105 4,352
% 213 146 254 399 0.09 3638 1.16 1.18 48.93

M N 204 138 256 404 3 3,320 105 103 4,542

% 229 1.55 288 454 0.03 3743 1.18 1.16 51.07

Kentucky F N 4 41 362 95 1 2,491 26 264 3,284
% 0.06 063 555 146 0.02 3821 040 4.05 5037

M N 5 21 337 98 6 2,446 37 286 3,236

% 008 032 517 150 0.09 3752 0.57 439 49.64

Michigan F N 25 100 642 139 6 2,295 9 159 3,375
% 037 146 940 2.03 0.09 3359 0.13 233 4939

M N 30 80 582 109 7 2,454 3 193 3,458

% 044 1.17 852 1.60 0.10 3591 0.04 282 50.61

Minnesota F N 203 439 607 551 1 7,883 2 262 9,948
% 1.02 220 3.04 276 0.01 3943 0.01 131 49.75
M N 206 448 o6l6 529 2 8,015 6 224 10,046

% 1.03 224 3.08 265 0.01 40.09 0.03 1.12 50.25

South F N 24 118 3,542 518 12 5,514 226 2 9,956
Carolina % 012 059 1771 259 006 2757 113 001 49.78
M N 22 101 3,561 545 9 5,585 216 5 10,044

% 011 0.51 17.81 2.73 0.05 2793 1.08 0.03 50.22

Notes: *1. Native American/Alaskan Native; 2. Asian; 3. African American; 4. Hispanic;
5. Native Hawaiian or Other Pacific Islander; 6. White; 7. Multi-ethnic;
8. Not specified or other.
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Table 1 Samples of MAP reading tests for ten states (continued)
Ethnicity*
State Gender Total
1 2 3 4 5 6 7 8
Washington F N 156 228 169 1,765 32 3,558 169 214 6,291
% 120 176 1.30 13.62 025 2746 130 1.65 48.55
M N 153 270 177 1905 51 3,739 181 190 6,666
% 1.18 2.08 137 1470 039 2886 140 147 5145
Wisconsin F N 126 240 462 525 3 5,755 8 226 7,345
% 0.84 1.61 3.10 352 0.02 3856 005 151 4921
M N 99 237 428 527 1 6,044 6 239 7,581
% 0.66 1.59 2.87 3.53 001 4049 004 160 50.79
Notes: *1. Native American/Alaskan Native; 2. Asian; 3. African American; 4. Hispanic;
5. Native Hawaiian or Other Pacific Islander; 6. White; 7. Multi-ethnic;
8. Not specified or other.
Table 2 Samples of MAP mathematics tests across five-wave from ten states
Ethnicity*
State Gender Total
1 2 3 4 5 6 7 8
Colorado F N 78 52 123 805 4 1,396 60 92 2,610
% 144 096 227 1486 0.07 2577 1.11 170 48.18
M N 64 53 131 830 6 1,594 51 78 2,807
% 1.18 098 242 1532 0.11 2943 094 1.44 51.82
Illinois F N 52 739 744 2,186 14 5543 230 360 9,868
% 026 3.70 3.72 1093 0.07 27.72 1.15 1.80 49.34
M N 63 680 745 2,152 11 5866 260 355 10,132
% 032 340 373 10.76 0.06 29.33 130 1.78 50.66
Indiana F N 22 76 370 222 0.00 4,18 163 128 5,166
% 021 074 3.61 217 0.00 40.84 1.59 125 5041
M N 9 61 298 216 1 4,214 152 130 5,081
% 0.09 0.60 291 211 0.01 41.12 148 127 49.59
Kansas F N 180 129 238 356 8 3,285 102 108 4,406
% 2.01 144 265 397 0.09 3664 1.14 120 49.14
M N 203 137 271 395 4 3,337 107 106 4,560
% 226 153 3.02 441 0.04 3722 1.19 1.18 50.86
Kentucky F N 4 42 381 101 1 2,486 27 278 3,320
% 0.06 0.64 577 153 0.02 37.66 041 421 50.287
M N 5 22 340 102 6 2,478 36 293 3,282
% 0.08 033 515 1.54 0.09 37.53 0.55 4.44 49.712

Notes: *1. Native American/Alaskan Native; 2. Asian; 3. African American; 4. Hispanic;
5. Native Hawaiian or Other Pacific Islander; 6. White; 7. Multi-ethnic; 8. Not

specified or other.
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Table 2 Samples of MAP mathematics tests across five-wave from ten states (continued)
Ethnicity*
State Gender Total
1 2 3 4 5 6 7 8
Michigan F N 22 86 627 172 5 2,301 9 136 3,358

% 032 1.26 9.8 252 0.07 3370 0.13 1.99 49.19
M N 24 74 563 137 6 2479 3 183 3469

% 035 1.08 825 201 0.09 3631 004 268 5081

Minnesota F N 217 432 628 518 1 7897 2 254 9949
% 1.09 216 3.14 259 001 3949 001 127 4975

M N 225 457 600 523 2 8026 3 215 10,051

% 1.13 229 3.00 262 0.0l 40.13 0.02 1.08 50.26

South F N 22 110 3622 521 11 5477 227 2 9,992
Carolina % 0.11 055 18.11 2.605 0.055 27.385 1.135 0.01 49.96
M N 24 102 3532 540 6 5591 205 8 10,008

% 012 051 1766 27 003 2795 1.025 0.04 50.04

Washington F N 167 264 189 1,881 31 3985 172 265 6,954
% 1.17 1.85 132 13.17 022 2791 120 1.86 48.70

M N 178 276 188 2,004 54 4205 186 233 7,324

% 125 193 132 1404 038 2945 130 1.63 51.30

Wisconsin F N 131 241 481 549 4 5933 19 214 7572
% 085 157 3.13 358 003 3864 012 139 4931

M N 102 236 449 539 4 6212 14 228 7,784

% 0.66 1.54 292 351 0.03 4045 0.09 1.48 50.69

Notes: *1. Native American/Alaskan Native; 2. Asian; 3. African American; 4. Hispanic;
5. Native Hawaiian or Other Pacific Islander; 6. White; 7. Multi-ethnic; 8. Not
specified or other.

2.2 Instruments

MAP has been published by Northwest Evaluation Association” (NWEA'™) since 1976,
and all MAP tests are computerised and presented adaptively. The purpose of MAP is to
provide educators with information to inform teaching and learning in reading, language
usage, mathematics and science (NWEA, 2011). The MAP tests align with the content
standards of each state by assembling a customised item pool to measure the specific
standards. The variation in the items pools selected across states is reflected in different
state tests in terms of the number of goals shown in the Table 3. For example, the MLGM
for the South Carolina reading test will consist of three goals, and the MLGM for the
Michigan mathematics test will consist of six goals.

Unlike state assessment programmes used to report proficiency under NCLB, MAP
tests allow certain off-grade items to be used for on-grade assessment for the purpose of
measuring growth. Test algorithms survey the pool within each content standard goal or
strand level to assure the content domain coverage. The marginal reliabilities of test
scores are consistently in the low- to mid-0.90s range across grades, tests and states
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(Northwest Evaluation Association, 2011). MAP items are calibrated with the Rasch
model (Rasch, 1961), and all MAP tests are vertically scaled (Northwest Evaluation
Association, 2011).

In the process of item selection, all items administered to each student must satisfy
the content requirements of each test to ensure the content validity of the test. Table 3
lists test length (fixed-length CAT) and numbers of goals (subtests) for reading and
mathematics for the 10 states. A sample of content specifications for reading in Colorado
and mathematics in Indiana is shown in Table 4. Due to the uniqueness of CAT test
forms, the observed variables used in this study are goal scores (item clusters) under the
assumption that the item cluster for each goal area contains homogeneous content across
students. All goal scores are scale scores on the same metric across goals and time
periods.

Table 3 Test length and numbers of goals (subtests) of reading and mathematics tests for
grades 5 to 7 across states

s Reading Mathematics
tate
Test length Number of goals Test length Number of goals
Colorado 40 4 50 6
Illinois 40 4 50 5
Indiana 40 5 50 7
Kansas 40 5 50 4
Kentucky 40 5 50 5
Michigan 40 4 50 6
Minnesota 40 4 50 4
South Carolina 40 3 50 5
Washington 40 5 50 4
Wisconsin 40 4 50 5
Table 4 Content specifications of Colorado reading and Indiana mathematics for grades 5 to 7
across states
Colorado reading Indiana mathematics
Goal % items per goal Goal % items per goal
Reading strategies, 25% Number sense 14%
comprehending literary
texts
Comprehending 25% Computation 14%
informative and
persuasive texts
Word relationships and 25% Algebra and functions 14%
meanings
Total operational items 25% Geometry 14%
Measurement 14%
Statistics, data analysis, 14%
and probability

Problem solving 14%
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Figure 1 The MLGM at five time points with linear growth structure and invariance of factor
loadings
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Figure2 The MLGM at five time points with quadratic growth structure and invariance of factor
loadings
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2.3 Multiple-indicator, latent-growth model (MLGM)

MLGM is a multivariate extension of FLGM (Bollen and Curran, 2006; Ferrer et al.,
2008; McDonald, 1985; McArdle, 1988; Muthén, 1991; Tisak and Meredith, 1990). If y;;
denote the observed variables (goals) for individual 7, indicator j and time point ¢, and let
n, denote a latent variable construct, the level-1 model for measurement part is:

Vit = Tje+ gl + &y (1

where 7, is intercept for the /™ indicator in the /" time period, Ay is the factor loading for
the /" indicator at the 7" time point, and &, is the random error for the /" individual in the
™ time point and the /™ indicator. Level-1 models for a latent variable with both linear
and quadratic growth are:

Linear growth

Ni = Noi + i Pu +Cu 2
Quadratic growth
i = Noi + i Pre + 12 B+ L 3)

where (;; is the random normal error for the i individual in the /" time point; 7¢;, 71; and
ny; are the intercept, slope and quadratic of latent factors, respectively, for individual i;
and S, and f? represent ™ time point coefficients that determine the shape of the

growth curve. Level 2 models are:

Linear growth
Moi = o + Coi “4)
mi = o+ (5)

Quadratic growth

Moi = o + oi (6)
mi = o+ (7
i =0 + (o ()

where {p;, {;; and {»; are normal random errors; o, o and o, are latent means of intercept,
slope and quadratic terms for individual i and w; is weight. All MAP tests have been
tested as one latent factor (Wang et al., 2011). Figure 1 and Figure 2 present the MLGM
with linear and quadratic latent growth.

2.4 Measurement invariance of using MLGM

The measurement invariance (Drasgow, 1987; Ferrer et al., 2008; Meredith, 1993)
evaluated in this study is the invariance across time points of testing. Although values of
manifest variables are different across time in longitudinal studies, they should be on the
same measurement scale to derive an equal definition of a latent construct across time.
Widaman and Reise (1997) classified two types of factorial invariance as non-metric
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(configural) and metric. Configural invariance (CI) refers to the same indicators of the
latent construct. The metric factorial invariance has three hierarchical levels, which are
categorised as weak invariance (WI), where the factor loading of each indicator is
invariant over time; strong invariance (SI), where the factor loading and intercept of each
indicator are invariant over time; and strict factorial invariance (SFI), where the factor
loading, intercept and unique variance of each indicator are invariant over time. Sayer
and Cumsille (2001) showed that the SFI is unlikely to hold because heterogeneous
variance across time is often observed. In this study, only CI, WI and SI are analysed.
The invariance tested is summarised in three conditions: the CI, the WI that can be
expressed as equation (9) and the SI that can be expressed in equation (10) and
equation (11):

HolleZ;sz:.../‘LjT:/lj (9)
Hotip=dp=..djr =4 (10)
Ho:ajp=ap=...a;r =a; (1D

where 4; = 1, o = 0 and variances of ¢;; and {, may vary over time. And for structural
differences, the mean of #,; and variance of 7,; vary over time.

Several well-known goodness-of-fit (GOF) indices were used to evaluate the model
fit. They are

1 absolute indices that include chi-square x* and standardised root mean square
residual (SRMR)

2 incremental indices that include the comparative fit index (CFI) and Tucker-Lewis
Index (TLI)

3 parsimony index, the root mean square error of approximation (RMSEA).

For nested models that include a different shape of growth (e.g., linear versus quadratic),
both Akaike’s Information Criterion (AIC; Akaike, 1987) and Bayesian Information
Criterion (BIC) (Schwartz, 1978) are obtained for each model tested. According to
Raftery (1995), the values of BIC difference (BIC of quadratic model — BIC of linear
model) ranging from 0 to 2 are interpreted as weak evidence for quadratic model, values
of 2 to 6 are interpreted as moderate, values of 6 to 10 are interpreted as strong and
values > 10 are interpreted as very strong. For model comparisons with increased
constraints, the y* value also provides the basis of comparison with the previously fitted
model in addition to AIC and BIC. y* is not considered best in practice because it is
sample-size dependent. A non-significant difference in ¥* values between nested models
reveals that all equality constraints hold across time. Therefore, the measurement model
remains invariant across groups as the constraints are increased. A significant y*value
does not necessarily indicate a departure from invariance when the sample size is large.
Hu and Bentler (1999) recommended using combinations of GOF indices to obtain a
robust evaluation for model-data fit in structural equation modelling. The cut-off criterion
values of a good model-fit that they recommended are CFI > 0.95, TLI > 0.95,
RMSEA < 0.06 and SRMR < 0.08. It is worth noting that many researchers (Marshet al.,
2005; Marsh, 2007; Sayer and Cumsille, 2001) consider the GOF criteria from Hu and
Bentler too restrictive. All analyses are conducted in Mplus 5.1 (Muthén and Muthén,
2007).
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2.5 Analytic approach

The different MLGM models have been used for different state MAP test results because
different states have different test specification or test blueprints. For each state, both
linear and quadratic MLGM models are fitted to MAP test data. All missing data are
handled by using Mplus default and according to Muthén et al. (1978), it is preferable to
pairwise deletion (LISTWISE = ON missing data is dealt using pairwise deletion)
because pairwise deletion requires missing completely at random (MCAR), not missing
at random (MAR).

Figure 3 Observed individuals growth of Y;;; of MAP mathematics test across five-wave for
Colorado
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Figure 4 Estimated individuals quadratic growth of Y[;;; of MAP mathematics test across five-
wave for Colorado
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Goodness-of fit indexes of MLGM models of MAP reading tests for different states

Table 5
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GOF indexes of MLGM models of MAP mathematics tests for different states

Table 6

“VASIAY JO SHWI] 90UIPIUOI 96 Ioddn pue 10m0[ a1 sasayjuared ur san[eA , 910N

SELT6S'6LL'T  €ETSS6'SLLT  TTO0  (SPO “€H0) 400 0860  T86'0  6VL'6LO'T  1LT  €90°01E'S snerpenb

9T6'TE9°08L'T  186'6S0°08LT  +T0°0  (L¥O ‘9¥0) 9¥0'0  8L6'0 0860 SLT  TIS6SE'6  95€'ST  Iwour] UISUOISI A

6ET1T9°6V0°T  S86'9E1°6Y0T  TH0'0 (LSO SS0)9S0°0  LL6O 0860  TSLFI9 991  8TTSIYL —

SSL'L6T'0SO'T  LIL'SPL'6YOT  9%0°0 (650" LSO) 8SO'0  9L60  8L60 0L1  010°0€T'8  8LTHI  Iedur]  uoySurysep

1STOTESYO'E  9LSTOLLKI'E 1200 (Sv0 ‘bv0’) SO0 1860 €860  SL9SOI'T  1LT  LLYPTI‘TI - eurore)

TICS6E0S9°E  0SSTO8'6YIE  LT00  (6¥0 ‘80 6¥0°0  8L60 0860 SLT  TSCEETET 0000  Tedur] qnog

950°S66'VS8T  ET68YPSST  T80'0 (490" ‘T907) €900  1L60  SL60  TOT'EEST 991  T6O'LEEEI sreapenb

PPS8SYLSST  SEEPIOLSST €600 (690" °L90) 8900 9960  0L60 0Ll  ¥61°0L8ST  000°0T  Jedur] BJOSIUUIIN

$8L906°SKT'T  €TELIESHTT  ¥T0'0 (PO ‘€KO) P00 1860 €860  6ISTI9E  ILT  189°TT8'E sneapenb

066'TETIVTT  THROTL'SKYT'T  ¥20°0  (Lb0 ‘bv07) 9v0'0  6L60  186°0 SLT  00THSI'v  LT8'9  Tedur] ueSIyoI

0SS'890°TITT  SELTESOITT 8100  (0V0 ‘8€07) 6£0°0  +86°0 9860  +SCLLy  1LT  LOT'886C -

PTLOISTITT  680°100°TIT'T 0200 (€40 “1¥07) THO'0  T86'0  €86°0 SLT  19S'S9v'S  T09'9  Teaur] Aomuay

LTI'SL6'E9T'T  0SY'ETSEITT  Sv0'0 (2SO “6¥0) 0SO'0 0860 €860  €LTEPS 991 S6T'IT6E —

S66PSLYIT'T  €T6'SSEYITT 8400 (950 “¥S0) SSO0  LL6 O  6L60 0L1  89S'V9LY 9968 Teaur] sesuey|

L8V L66'SIL'T  006'80TEILT  $66°0 (S11°“IT1)TIT0  ¥8L°0 86L°0 I1STTOO'LL 9SS  LST'E96°IL srerpenb

6T8°T96°06L°T  181°E0T06LT  6SS'€  (Z91°“091) 1910 €550 0850 09S  8E€¥'S96°8PT  LPTOl  Iedur] eueIpU]

€88°CIV8I9°C  LOS'6SLLIOE  LT00  (bPO “THO) €00 T86'0  ¥86'0  1TTSIOT  [LT  10E€TTE0I -

16v°68€°619°C  6TL96L8I9E 6200  (9v0 ‘b¥0’) SO0 1860  T86°0 SLT  TTSLESTL  000°0T  Jedur] stour][[

9ST'€L6°TOTT  TI0ESETOTT  €€0°0  (9€0° “€€0) #€0'0 9860  L86'0 #6691  10v  88¥'€86°C -

OLL'SST'E0TT  €1079STOTT  €€0°0  (LEO ‘S€07) 9€0°0  S86°0 9860 SOb  T8K00T'E  LIp'S  Tedur] opeIo[o)
oI1g o IS «VASINY 1L 1D AV / Z N 12POW amig




398 S. Wang et al.
3 Results

3.1 Results of MLGM

Figure 3 and Figure 4 illustrate a sample of observed and estimated individual quadratic
growth based on MGLM across five-wave academic terms. Table 5 and Table 6 display
the summaries of GOF indexes of MLGM data fit for linear and quadratic growth in
reading and mathematics across states. All values of the fit indexes satisfy the Hu and
Bentler (1999) criteria in both content areas and show that each model fits the data
extremely well across states, with one exception in Indiana for mathematics.

The overall results suggest that both linear and quadratic MLGMs are reasonably
good models for MAP tests in ten states. For AIC, the lower value (positive or negative)
indicates a better fit than the higher value. The results show that the quadratic model fits
data better than the linear model in the nested modelling comparison. For BIC, all
differences between quadratic and linear models are greater than 10 in both reading and
mathematics, which indicate that the quadratic model fits the data better than the linear
model. The statistically significant 5 difference between the quadratic and linear models
provides additional evidence to support the conclusion that the quadratic model is a better
fit for the data than the linear model. It is also important to note that both the linear and
quadratic models show that the longitudinal achievement construct underlying
achievement measures equally well in growth.

3.2 Results of invariance of MLGM

Table 7 and Table 8 present the summaries of GOF indexes with nested linear MLGM
that was used for measurement invariance across five waves in reading and mathematics.
Nearly all fit indexes satisfied Hu and Bentler’s criteria in both reading and mathematics
tests across states except Indiana. Some SRMRs seemed to be slightly above Hu and
Bentler’s criteria. In evaluating measurement invariance, the simple model is a restricted
model and the complex model is an unrestricted model. The effect of constraints imposed
on the less restricted model can be evaluated by using the difference of x> (Ay?) for
nested model comparisons, because the degree of freedom is equal to the difference in the
degrees of freedom of two models. Results indicate that all y* increases (Ay”) are
statistically significant for evaluating the differences of invariance between unrestricted
and restricted models. As y” becomes statistically significant, a more complex model
should be chosen. However, the limitations of the y” test are the sample size dependency
(Cheung and Rensvold, 2002) and the difference of other GOF indexes (such as CFI) as
adjuncts to the y” statistic, which can also be used to assess model fit. According to
Cheung and Rensvold (2002), if the difference of CFI (ACFI) is less than 0.01 between
the two models, the simple model is not worse than the complex model. The value of all
ACFIs less than 0.01 in both tests indicates that constrained parameters are invariant
across time.

In summary, the results of analyses in this study provide clear support to the CI, WI
and SI for all tests except the Indiana mathematics test. These results suggest that
longitudinal constructs of MAP tests are well defined for measuring student achievement
growth.
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GOF indexes of invariances of linear MLGM models of MAP reading tests

Table 7
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GOF indexes of invariances of linear MLGM models of MAP reading tests

(continued)
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GOF indexes of invariances of linear MLGM models of MAP mathematics tests
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"OIqE[IBAB JON 4 x
"o0uBLIBAUI SUONS ([ ‘OOUBLIBAUI JBAM ([A\ ‘@0UBLIBAUT [2INSIJU0D 1]
aIe sapeiS sso1oe [enba 2q 0} PAJOLIISAI SHUIBIISUOD [OPOUL JO S[IAJ] YLy SAION

PST'06L'CIT'T  ¥96°L6V'EITT  0L00 €SO0 0L60  0L60  €6TYLET  LOS  SEV'9T0°9 IS

T8S9SSTITT  OLYSSI'TITT 6500  THO'O  T86'0  T86°0 1857981 16T TH1'TS9'E M

YZLOTSTTITT  680°T00°TITT  0T00  TH0'0 7860 £€86°0 SLT  19S°S9K'E 7099 D Apormuay]

86V'89V°69T°T  SSSTIT69TT 9210 +vLOO  8S6°0  LS6'0  TIOOIYY P61 1059996 IS

160°L91°S9T°T  $ET9T8YITT  1TI'0 9S00  9L60  LL6O 1€ 16V 81 6LYSSTS M

S66'V8LYITT  €T6'SSEFITT  8Y0'0  SSO'0  LL6O  6L60 0L 89SVILY 9968 D sesuey]

SS8SPTELLL'T  SOTTIGOLLT o LVT'0 ST90  L190 809  TOVOLL'SEI IS

6T8°T9606L°T  I8T'€0T06LT  6SS°€ 1910 €SS0 0850 09S  8EV'S96'SKT  LKTOI D euRIpU]

TWE Y9879 TOY'10E'8T9E 8800 8S0°0 8960  L960  TIO9TH'S  LOS  TST906°0T IS

98L°ELE0T9'E  08F'LO6'619°C  TSO'0  9¥0'0 0860 0860  SYLTHI'T 16T  OLTOSYTI M

16V'68€°619°C  6TL'96L8I9E 6200  SKO'0 1860 7860 SLT  TTSLESTT  000°0T D stour([]

SPSPISYSTT  PEO'ESEPSTT  S90°0  9¥00  ¥L6O  ¥L6O  696TOST Sk 90S0€9°S IS

SLSOTTEOT'T  ¥90'6¥9°TOTT LSOO 9€00  S86'0  S86°0 $S0°'LTI STr LES'LTE'S M

OLL'SST'€0T'T  €10°T9S°TOTT €600 9€00  S86'0  986°0 SOv  T8Y00T°E  LIVS D opeiojo)
oI1g o1y YIS VASWY T 11D pay s X N «12POI amig




S. Wang et al.

402

GOF indexes of invariances of linear MLGM models of MAP mathematics tests

(continued)

Table 8

"O[qB[IBAB JON 4
"90UBLIEAUT SUONS (S “OIUBLIBAUL LM ([A\ “OOUBLIEAUI [BINSUOD 1))
oIe sopeid ssoIoe [enba oq 03 PAIOLIISAI SJUTEIISUOD [OPOW JO S[OAJ] YL 4 :SAION

1€9°8L9°V8L'T  SPI'OSEYSL'T  SSO0 €500 1,60  0L60 685060  LOS  €L6'EHLEI IS

OLTTYLOSLT  ¥SSI6T0SLT  LWOO  9¥00  SL60  6L60 TLS'E9T 167 ¥8€€59°6 M

976'TE908LT  186'6S0°08LT  ¥T00  9¥0'0  8L60 0860  TIS68€6  SLT  CTIS68E'6  9SES] D UISUoISI M

9S9'€€T9S0T  TITTI96'SSOT  SE1'0  TLOO  T96°0  TY60  €S6'0S6F W61 90S'S6vl IS

00S'L6€1SOT  60EPE0'TSOT ST 0900  ¥L60  SL6O  €HSHIET T8I €SS hS6 M

SSL'LEI0SOT  LOL'SYL'6Y0'T  9¥0'0  8S00  9L60  SL6O 0L1  010°0€T'8  8LT¥I i) uoySurysep

996'79'6S9°C  9IT'ETI‘6S9°C #6000 0900 9960  S960  vYFETLL  LOS  LIELIYTT IS

LLE'L6STSOE  TLOTEFISOE  S600  0S0°0  LL6O  LL6O  ITI'T99T 16T  ELVb68F1 M eurjoI)

TIES6E0S9°E  0SSTO86V9°C  LZOO  6¥00  SL60 0860 SLT  TSEELTEl  0000T o) ynog

LEYEIT698T  TI'6T6'898T  THI'0  ¥80°0  8¥6'0  Lv6'0  YOTOSSOl  ¥61  OL6'TES'LT IS

SLTTYL'SSST  806'TOV'SSST  6€1°0 6900 9960  L96°0  TLSTIHT T8I 99LTSTLI M

PPS'88YLS8T  SECFIOLSST €600 8900 9960  0L60 0L1  61°0L8'ST  000°0T D ©)0SOUUIA

TLOOVO'6YT T ObY'TSL'SYTT  1L00 85000 L960 9960  LT9906T  LOS  66L'6LTL IS

€0L'08TOVT'T  PISLLYSKT'T 6500  SPOO 0860 08670 7L6'881 16T TLISLEY M

066'TETOVTT  THSOTL'SYTT  ¥T00  9¥00 6460 1860 SLT  00TH8IY  LT89 o) ue31yoIN
org o1 YW4S  vASWY  ITL IE) AV Jp p N «12POW RN




Validation of longitudinal achievement 403
4 Discussion

Since the factor structure of a test is directly related to the construct validity interpretation
of the test at a particular point in time, the longitudinal factor structure at different points
in time is crucial for the longitudinal construct validity interpretation to measure student
growth. The achievement constructs of a test at a particular time, grade level or semester
calendar is well studied and reported in practice for given purposes and related
interpretation of test scores. Although many standardised achievement tests in large-scale
assessments report test scores on a vertical scale for student growth and group
achievement trends, few studies reported the longitudinal achievement construct. Many
researchers are interested in whether the longitudinal achievement construct remains the
same over time or shifts from time to time from content standard and vertical scaling
perspectives. A few studies have focused on validation of longitudinal achievement
construct using the MLGM approach, especially for studies based on CAT longitudinal
data.

First, this study examined the hypothesis of shapes of latent construct across time. As
shown in Table 5, the shape of the growth fits both linear and quadratic MLGM well;
however, quadratic growth has slight advantages over linear growth in terms of fit
statistics. This means that between two competing interpretations of longitudinal
constructs across grades, quadratic growth makes more real sense because, in general, the
rate of changes of student achievement across grades are not constant. From longitudinal
perspective, for example, lower grades growth is always faster than higher grades growth
across time for both reading and mathematics achievement tests.

Second, the present study tested the hypothesis of factorial invariance of MAP
reading and mathematics tests over time. The evidence collected in the study shows that
with repeated measures, the construct of both reading and mathematics remained
consistent at different points in time, which supports the internal structure of MAP design
for intended purposes. The evidence also suggest that there are not only configure and
WI, but also SI of the longitudinal construct in MAP reading and mathematics tests
across different states (except the Indiana mathematics test), which supports valid
interpretations of student growth.

The current study utilised the advantages of MLGM over FLGM to investigate the
longitudinal construct of achievement test. No longitudinal achievement constructs
studies using MLGM have been done on CAT data across states. The major difference
between FLGM and MLGM is that the FLGM uses total scores as observable variable in
analysis, while the MLGM uses item cluster (or item) as observable variable. However,
since the study was based on longitudinal data, students who missed one test were
excluded from the sample, which might introduce sample bias.

In summary, this study underscores the importance of empirical evidence in
validating longitudinal achievement constructs to support the interpretation of student
growth. In particular, the study explored the feasibility of assessing the internal structure
of MAP tests using CAT data. The results support consistent and reasonable
interpretations of the MAP reading and mathematics tests across academic calendar years
used by different states. This study carries the validation process beyond a traditional
construct validation process in which validation evidence is usually collected at one point
in time only, but used to support the longitudinal achievement construct for student
growth. It is indeed important to investigate the longitudinal achievement construct to
ensure that the same construct is measured over time for a valid interpretation of student
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achievement growth. We strongly recommend that achievement test publishers and users
continue investigating the longitudinal achievement construct and construct invariance
over time in the near future to support valid interpretations of student academic growth.

5 Limitations of the study

First, although the current study takes the advantages of MLGM over FLGM, the study
could not avoid using item parcels or clustering items as indicators of the MLGM for
CAT data. The effect of using aggregated indicators vs. individual items is unknown and
item parcels’ interpretability has not been sufficiently examined with respect to content.
Second, it is well-known fact that heterogeneity in sample may bias the model estimates
(Muthén, 1989). All samples used in this study are not homogeneous with respect to at
least gender and ethnicity, and the impact of heterogeneity on model parameter estimates
is unknown.
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