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Abstract: It is a commonly accepted assumption by educational researchers 
and practitioners that an underlying longitudinal achievement construct exists 
across grades in K-12 achievement tests. This assumption provides the 
necessary assurance to measure and interpret student growth over time. 
However, evidence is needed to determine whether the achievement construct 
remains consistent or shifts over grades or time. The current investigative study 
uses a multiple-indicator, latent-growth modelling (MLGM) approach to 
examine the longitudinal achievement construct and its invariance for the 
measures of academic progress® (MAP®), a computerised adaptive test in 
reading and mathematics. The results of the analyses from ten states suggest 
that with repeated measures, the construct of both MAP reading and 
mathematics remained consistent at different time points. The findings support 
the achievement construct’s invariance throughout different grades or time 
points and provide empirical evidence for measuring student growth. 

Keywords: validity; longitudinal achievement construct; computerised 
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1 Introduction 

Most current achievement tests can be characterised by their test algorithm and 
administration platforms. Two major testing algorithms are commonly employed in 
achievement tests: one is the linear test, in which all students answer all test items. 
Another is the computerised adaptive test (CAT), in which different students may get 
different items. During adaptive testing, each item that administrates to an individual 
student adapts to his or her provisional achievement ability by selecting the most 
appropriate item difficulty. The most common platforms for achievement tests are paper 
and pencil and computer. When the linear test algorithm is used in computer platforms, 
the test is called a ‘computer-based test’; when the CAT algorithm used in computer 
platforms, the test is a ‘CAT’. 

For decades, achievement tests delivered either in linear or CAT algorithms have 
been constructed to provide formative or summative measures about students’ 
achievement status at grade level (for example, Amy’s third-grade mathematics test score 
in Fall 2005), academic growth over time from longitudinal data (for example, Amy’s 
third-grade mathematics test score in Fall 2005 and her seventh-grade mathematics score 
in Fall 2009) or achievement across grades from cross-sectional data (for example, 
Amy’s third-grade, Johnny’s fourth-grade and Tim’s fifth-grade mathematics scores in 
Fall 2005) (Hamilton et al., 2008; Patz, 2007; Smith and Yen, 2006; Yen, 2007, 2009). In 
recent educational reforms, assessing individual students’ growth has been required for 
high-stakes decisions by state and federal education policy, such as the race to the top 
initiatives (RTTT) (U.S. Department of Education, 2009). These requirements have put 
tremendous pressures on states and testing companies to develop high-quality and  
high-utility assessment systems. As RTTT states: “(Student) growth may be measured by 
a variety of approaches, but any approach used must be statistically rigorous and based 
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on student achievement data, and may also include other measures of student learning in 
order to increase the construct validity and generalizability of the information” [U.S. 
Department of Education, (2009), p.37812]. CATs are considered more effective than 
linear tests for measuring individual students’ growth over time (Way et al., 2010). The 
advantages of CATs over linear tests include shorter tests, immediate student score 
reporting, higher reliability and measurement accuracy (Kingsbury and Weiss, 1983; 
Lord, 1977; Thissen and Mislevy, 1990), cost savings and multiple testing opportunities 
for formative and interim assessments (Way, 2006). 

Measuring individual student growth has two fundamental requirements (Bergman  
et al., 1991; Betebenner and Linn, 2010; Doran and Cohen, 2005; Linn, 1993; Mislevy, 
1992; Williamson et al., 1991). First, there are multiple measures of achievement 
construct along the growth trajectory. Second, the achievement construct should be 
invariant from different grade levels or points in time. 

This means that in order to measure student growth, achievement tests must satisfy 
two necessary conditions: First, there must be a continuous construct that the tests are 
designed to measure over grades or time; i.e., the tests are scored on a longitudinal 
construct. Second, the construct measured by multiple tests must be invariant, or 
constant, across grade levels and time; i.e., the construct does not shift over grade levels 
or time (Wang and Jiao, 2009). 

Many researchers have investigated whether achievement tests satisfy these two 
assumptions from the perspectives of content and vertical scaling (Cizek, 2005; Linn, 
2001; Lissitz, 2006; Martineau et al., 2007; Wang and Jiao, 2009; Wise, 2004). The study 
by Wang and Jiao (2009) provided empirical evidence to support construct invariance 
across grades for a vertically scaled norm-referenced test. However, few studies examine 
the longitudinal achievement construct and construct invariance across grade levels and 
points in time with CAT. 

Achievement construct invariance is an important validity issue. According to the 
Standards for Educational and Psychological Testing [American Educational Research 
Association (AERA), American Psychological Association (APA) & National Council on 
Measurement in Education (NCME), 1999], validity is the most important consideration 
in test development and evaluation. Validity refers to the degree to which empirical 
evidence and theoretical rationale support the inferences and actions based on test scores 
(Messick, 1989) or the degree to which evidence and theory support the interpretations of 
test scores for the proposed use of tests (American Educational Research Association, 
American Psychological Association & National Council on Measurement in Education, 
1999). Interpretations of test results that measure achievement ability or traits are subject 
to many validity threats, including two major threats: construct-under representation 
(CUR) and construct-irrelevant variance (CIV) (Messick, 1984). The construct of a test is 
a theoretical representation of the underlying traits, concepts, attributes, processes or 
structures the test is designed to measure, and it directly relates to test validity (Cronbach, 
1971; Messick, 1989). Five sources of validity evidence specified in the Standards 
include 

a test content 

b response process 

c internal structure 
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d relations to other variables 

e consequences of testing. 

CUR and CIV could be identified in the process of test development, administration and 
use of test results. This study focuses on validity evidence of internal structure and the 
invariance of the internal structure of achievement tests across grades and/or over time. 

Factorial validity can be a valuable component of validity evidence (Guilford, 1946; 
Messick, 1995). Although evidence of a test’s internal structure is routinely reported in 
many test technical reports or manuals from state assessment programmes and test 
companies, construct invariance is rarely addressed from a longitudinal perspective when 
test results are routinely used to determine student growth. Many test publishers have 
used the first-order latent growth curve model (FLGM) (Bollen and Curran, 2006; 
McArdle et al., 2009; Muthén, 1995) in longitudinal studies of student growth, based on 
the assumption that there is a continuous test construct. Unfortunately, little attention has 
been drawn to examine the assumption in practice. The second-order latent growth 
model, or the multiple-indicator latent growth model (MLGM), is rarely used to evaluate 
the longitudinal construct validity for adaptive test achievement based on CAT. There are 
two advantages of MLGM over FLGM (Bollen and Curran, 2006; Ferrer et al., 2008; 
Muthén and Muthén, 2007; Sayer and Cumsille, 2001). First, MLGM can test, instead of 
making assumptions, whether the same latent construct is measured at each point in time 
or grade level. Second, it accounts for important information of the psychometric 
properties on the indicators. MLGM can be used to evaluate factorial invariance across 
points in time and determine whether the same latent construct is measured across time or 
grade levels so as to assure that changes of test scores quantify achievement growth 
rather than the shift of the achievement test construct. 

FLGM uses total scores as an observable variable or indictor in the longitudinal 
achievement growth analysis, while MLGM uses observed indicators either at the item 
level or the cluster of items level (testlet, subtest, goal score, etc.). The choice of the level 
of an indicator in MLGM or in general factor analysis has a significant effect on 
evaluating the construct, because item cluster involves averaging item scores and using 
summed scores as observed variables in analyses (Bandalos, 2002; Bandalos and Finney, 
2001; Hall et al., 1999; Little et al., 2002; Nasser and Wisenbaker, 2003). Some reasons 
to use clusters of items are to reduce the problems of non-normality, to have fewer free 
parameters to be estimated compared to the number of observations and to improve  
data-model fit. Arguments state that using clusters of items increases the chance of 
combining items that truly measure multiple dimensions and therefore results in severe 
bias. Overall, clustering items is a commonly used technique based upon theoretical 
rationale. 

Compared with linear tests, it is almost impossible to use indicators at the item level 
for adaptive tests because each student receives different items tailored to his or her 
ability. Using unique test forms with CATs makes evaluating longitudinal achievement 
constructs complicated. Compared with linear tests, CATs present two major challenges 
in using observable variables for MLGM. First, observable variables are different across 
persons at the item level. Second, even though the observable variables are the same at 
the cluster level, the context of the observable variables is different; i.e., the same subtest 
score may consist of different items for the same content. One possible solution to the 
first problem is to conduct a confirmatory factor analysis at the item level on the entire 
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item bank. However, the drawback is the large amount of missing response data in  
the dataset. For example, the missing rate for the measure of academic progress  
(MAP, Northwest Evaluation Association, 2011) is around 98% for the reading and 
mathematics tests. Besides, the data are very sparse, because the ratio of the test length to 
the size of the item bank is about 1:50 (Wang and Harris, 2011). The commonly  
used imputation method (Rubin, 1987) may statistically help solve the problem, but it 
cannot deal with the missing data issue from the content perspective. Another  
possible solution for improvement is to treat items as nested inside person within the 
framework of generalisability theory, which provides information on parcel scores 
reliability. 

The purpose of this study is to investigate the longitudinal achievement constructs of 
a standardised, large-scale CAT in reading and mathematics across ten states. 

2 Method 

2.1 Data source and participants 

All data used in this study were collected from the measures of academic progress (MAP) 
assessment system from Spring 2009 through Spring 2011. The MAP reading and 
mathematics tests were administered to students in grades 3–10 across 50 US states. The 
data analysis only focused on the ten states (Colorado, Illinois, Indiana, Kansas, 
Kentucky, Michigan, Minnesota, South Carolina, Washington and Wisconsin) that 
supplied the largest samples among the 50 states. For each state, the data were collected 
as part of a five-wave panel design (Spring 2009/Grade 5, Fall 2009/Grade 6, Spring 
2010/Grade 6, Fall 2010/Grade 7 and Spring 2011/Grade 7). Each state sampled the 
corresponding population under the constraints that students must have five academic 
calendar records (five-wave) from grade 5. Student demographic data is collected legally 
and ethically through the Master Services Agreement with each NWEA partner. And at 
no time is personally identifiable information (PII) released without the written consent 
and permission of the associated partner. All data collection, storage and use in studies 
meets the requirements of the Family Educational Rights and Privacy Act (FERPA, U.S. 
Department of Education, 2012). Prior to each test administration, NWEA partners roster 
students who will take the MAP, and it is through this rostering process that student PII is 
provided (student first, last and middle name; date of birth, grade, gender and ethnicity). 
This data assists in properly identifying and tracking students from one test 
administration to another in order to assign the correct test scores, goal data and other 
relevant test characteristics. 

Although this paper does not focus on the effect of heterogeneity of samples on 
parameter estimates of the MLGM, a previous study (Zhang and Wang, 2012) found 
statistically significant different rates of change by gender, using across-grade cohorts 
with a non-linear hierarchical linear model (HLM). 

Table 1 and Table 2 list the frequency distributions and percentages of reading and 
mathematics for sample states (due to limited space) across five-wave by state, gender 
and ethnicity. 
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Table 1 Samples of MAP reading tests for ten states 

State Gender 
Ethnicity* 

Total 
 1 2 3 4 5 6 7 8 

Colorado F N 78 51 119 729 4 1,351 57 93 2,482 
 % 1.53 1.00 2.34 14.34 0.08 26.58 1.12 1.83 48.84 

M N 59 50 113 708 6 1536 52 76 2,600 
 % 1.16 0.98 2.22 13.93 0.12 30.22 1.02 1.50 51.16 

Illinois F N 58 754 698 2,299 13 5,486 220 342 9,870 
 % 0.29 3.77 3.49 11.50 0.07 27.43 1.10 1.71 49.35 

M N 53 692 725 2,320 15 5,733 259 333 10,130 
 % 0.27 3.46 3.63 11.60 0.08 28.67 1.30 1.67 50.65 

Indiana F N 20 77 365 254  4,247 162 124 5,249 
 % 0.19 0.74 3.50 2.43  40.71 1.55 1.19 50.31 

M N 9 60 295 249 1 4,285 156 129 5,184 
 % 0.09 0.58 2.83 2.39 0.01 41.07 1.50 1.24 49.69 

Kansas F N 189 130 226 355 8 3,236 103 105 4,352 
 % 2.13 1.46 2.54 3.99 0.09 36.38 1.16 1.18 48.93 

M N 204 138 256 404 3 3,329 105 103 4,542 
 % 2.29 1.55 2.88 4.54 0.03 37.43 1.18 1.16 51.07 

Kentucky F N 4 41 362 95 1 2,491 26 264 3,284 
 % 0.06 0.63 5.55 1.46 0.02 38.21 0.40 4.05 50.37 

M N 5 21 337 98 6 2,446 37 286 3,236 
 % 0.08 0.32 5.17 1.50 0.09 37.52 0.57 4.39 49.64 

Michigan F N 25 100 642 139 6 2,295 9 159 3,375 
 % 0.37 1.46 9.40 2.03 0.09 33.59 0.13 2.33 49.39 

M N 30 80 582 109 7 2,454 3 193 3,458 
 % 0.44 1.17 8.52 1.60 0.10 35.91 0.04 2.82 50.61 

Minnesota F N 203 439 607 551 1 7,883 2 262 9,948 
 % 1.02 2.20 3.04 2.76 0.01 39.43 0.01 1.31 49.75 

M N 206 448 616 529 2 8,015 6 224 10,046 
 % 1.03 2.24 3.08 2.65 0.01 40.09 0.03 1.12 50.25 

South 
Carolina 

F N 24 118 3,542 518 12 5,514 226 2 9,956 
 % 0.12 0.59 17.71 2.59 0.06 27.57 1.13 0.01 49.78 

M N 22 101 3,561 545 9 5,585 216 5 10,044 
 % 0.11 0.51 17.81 2.73 0.05 27.93 1.08 0.03 50.22 

Notes: *1. Native American/Alaskan Native; 2. Asian; 3. African American; 4. Hispanic; 
5. Native Hawaiian or Other Pacific Islander; 6. White; 7. Multi-ethnic;  
8. Not specified or other. 
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Table 1 Samples of MAP reading tests for ten states (continued) 

State Gender 
Ethnicity* 

Total 
 1 2 3 4 5 6 7 8 

Washington F N 156 228 169 1,765 32 3,558 169 214 6,291 
 % 1.20 1.76 1.30 13.62 0.25 27.46 1.30 1.65 48.55 

M N 153 270 177 1905 51 3,739 181 190 6,666 
 % 1.18 2.08 1.37 14.70 0.39 28.86 1.40 1.47 51.45 

Wisconsin F N 126 240 462 525 3 5,755 8 226 7,345 
 % 0.84 1.61 3.10 3.52 0.02 38.56 0.05 1.51 49.21 

M N 99 237 428 527 1 6,044 6 239 7,581 
 % 0.66 1.59 2.87 3.53 0.01 40.49 0.04 1.60 50.79 

Notes: *1. Native American/Alaskan Native; 2. Asian; 3. African American; 4. Hispanic; 
5. Native Hawaiian or Other Pacific Islander; 6. White; 7. Multi-ethnic;  
8. Not specified or other. 

Table 2 Samples of MAP mathematics tests across five-wave from ten states 

State Gender 
Ethnicity* 

Total 
 1 2 3 4 5 6 7 8 

Colorado F N 78 52 123 805 4 1,396 60 92 2,610 
 % 1.44 0.96 2.27 14.86 0.07 25.77 1.11 1.70 48.18 

M N 64 53 131 830 6 1,594 51 78 2,807 
 % 1.18 0.98 2.42 15.32 0.11 29.43 0.94 1.44 51.82 

Illinois F N 52 739 744 2,186 14 5,543 230 360 9,868 
 % 0.26 3.70 3.72 10.93 0.07 27.72 1.15 1.80 49.34 

M N 63 680 745 2,152 11 5,866 260 355 10,132 
 % 0.32 3.40 3.73 10.76 0.06 29.33 1.30 1.78 50.66 

Indiana F N 22 76 370 222 0.00 4,185 163 128 5,166 
 % 0.21 0.74 3.61 2.17 0.00 40.84 1.59 1.25 50.41 

M N 9 61 298 216 1 4,214 152 130 5,081 
 % 0.09 0.60 2.91 2.11 0.01 41.12 1.48 1.27 49.59 

Kansas F N 180 129 238 356 8 3,285 102 108 4,406 
 % 2.01 1.44 2.65 3.97 0.09 36.64 1.14 1.20 49.14 

M N 203 137 271 395 4 3,337 107 106 4,560 
 % 2.26 1.53 3.02 4.41 0.04 37.22 1.19 1.18 50.86 

Kentucky F N 4 42 381 101 1 2,486 27 278 3,320 
 % 0.06 0.64 5.77 1.53 0.02 37.66 0.41 4.21 50.287 

M N 5 22 340 102 6 2,478 36 293 3,282 
 % 0.08 0.33 5.15 1.54 0.09 37.53 0.55 4.44 49.712 

Notes: *1. Native American/Alaskan Native; 2. Asian; 3. African American; 4. Hispanic; 
5. Native Hawaiian or Other Pacific Islander; 6. White; 7. Multi-ethnic; 8. Not 
specified or other. 
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Table 2 Samples of MAP mathematics tests across five-wave from ten states (continued) 

State Gender 
Ethnicity* 

Total 
 1 2 3 4 5 6 7 8 

Michigan F N 22 86 627 172 5 2,301 9 136 3,358 
 % 0.32 1.26 9.18 2.52 0.07 33.70 0.13 1.99 49.19 

M N 24 74 563 137 6 2,479 3 183 3,469 
 % 0.35 1.08 8.25 2.01 0.09 36.31 0.04 2.68 50.81 

Minnesota F N 217 432 628 518 1 7,897 2 254 9,949 
 % 1.09 2.16 3.14 2.59 0.01 39.49 0.01 1.27 49.75 

M N 225 457 600 523 2 8,026 3 215 10,051 
 % 1.13 2.29 3.00 2.62 0.01 40.13 0.02 1.08 50.26 

South 
Carolina 

F N 22 110 3622 521 11 5,477 227 2 9,992 
 % 0.11 0.55 18.11 2.605 0.055 27.385 1.135 0.01 49.96 

M N 24 102 3532 540 6 5,591 205 8 10,008 
 % 0.12 0.51 17.66 2.7 0.03 27.95 1.025 0.04 50.04 

Washington F N 167 264 189 1,881 31 3,985 172 265 6,954 
 % 1.17 1.85 1.32 13.17 0.22 27.91 1.20 1.86 48.70 

M N 178 276 188 2,004 54 4,205 186 233 7,324 
 % 1.25 1.93 1.32 14.04 0.38 29.45 1.30 1.63 51.30 

Wisconsin F N 131 241 481 549 4 5,933 19 214 7,572 
 % 0.85 1.57 3.13 3.58 0.03 38.64 0.12 1.39 49.31 

M N 102 236 449 539 4 6,212 14 228 7,784 
 % 0.66 1.54 2.92 3.51 0.03 40.45 0.09 1.48 50.69 

Notes: *1. Native American/Alaskan Native; 2. Asian; 3. African American; 4. Hispanic; 
5. Native Hawaiian or Other Pacific Islander; 6. White; 7. Multi-ethnic; 8. Not 
specified or other. 

2.2 Instruments 

MAP has been published by Northwest Evaluation Association™ (NWEA™) since 1976, 
and all MAP tests are computerised and presented adaptively. The purpose of MAP is to 
provide educators with information to inform teaching and learning in reading, language 
usage, mathematics and science (NWEA, 2011). The MAP tests align with the content 
standards of each state by assembling a customised item pool to measure the specific 
standards. The variation in the items pools selected across states is reflected in different 
state tests in terms of the number of goals shown in the Table 3. For example, the MLGM 
for the South Carolina reading test will consist of three goals, and the MLGM for the 
Michigan mathematics test will consist of six goals. 

Unlike state assessment programmes used to report proficiency under NCLB, MAP 
tests allow certain off-grade items to be used for on-grade assessment for the purpose of 
measuring growth. Test algorithms survey the pool within each content standard goal or 
strand level to assure the content domain coverage. The marginal reliabilities of test 
scores are consistently in the low- to mid-0.90s range across grades, tests and states 
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(Northwest Evaluation Association, 2011). MAP items are calibrated with the Rasch 
model (Rasch, 1961), and all MAP tests are vertically scaled (Northwest Evaluation 
Association, 2011). 

In the process of item selection, all items administered to each student must satisfy 
the content requirements of each test to ensure the content validity of the test. Table 3 
lists test length (fixed-length CAT) and numbers of goals (subtests) for reading and 
mathematics for the 10 states. A sample of content specifications for reading in Colorado 
and mathematics in Indiana is shown in Table 4. Due to the uniqueness of CAT test 
forms, the observed variables used in this study are goal scores (item clusters) under the 
assumption that the item cluster for each goal area contains homogeneous content across 
students. All goal scores are scale scores on the same metric across goals and time 
periods. 
Table 3 Test length and numbers of goals (subtests) of reading and mathematics tests for 

grades 5 to 7 across states 

State 
Reading  Mathematics 

Test length Number of goals  Test length Number of goals 

Colorado 40 4  50 6 
Illinois 40 4  50 5 
Indiana 40 5  50 7 
Kansas 40 5  50 4 
Kentucky 40 5  50 5 
Michigan 40 4  50 6 
Minnesota 40 4  50 4 
South Carolina 40 3  50 5 
Washington 40 5  50 4 
Wisconsin 40 4  50 5 

Table 4 Content specifications of Colorado reading and Indiana mathematics for grades 5 to 7 
across states 

Colorado reading  Indiana mathematics 

Goal % items per goal  Goal % items per goal 
Reading strategies, 
comprehending literary 
texts 

25%  Number sense 14% 

Comprehending 
informative and 
persuasive texts 

25%  Computation 14% 

Word relationships and 
meanings 

25%  Algebra and functions 14% 

Total operational items 25%  Geometry 14% 
   Measurement 14% 
   Statistics, data analysis, 

and probability 
14% 

   Problem solving 14% 
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Figure 1 The MLGM at five time points with linear growth structure and invariance of factor 
loadings 

 

Figure 2 The MLGM at five time points with quadratic growth structure and invariance of factor 
loadings 
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2.3 Multiple-indicator, latent-growth model (MLGM) 

MLGM is a multivariate extension of FLGM (Bollen and Curran, 2006; Ferrer et al., 
2008; McDonald, 1985; McArdle, 1988; Muthén, 1991; Tisak and Meredith, 1990). If yjti 
denote the observed variables (goals) for individual i, indicator j and time point t, and let 
ηti denote a latent variable construct, the level-1 model for measurement part is: 

jti jt jt ti jtiy τ λ η ε= + +  (1) 

where τjt is intercept for the jth indicator in the tth time period, λjt is the factor loading for 
the jth indicator at the tth time point, and εjti is the random error for the ith individual in the 
tth time point and the jth indicator. Level-1 models for a latent variable with both linear 
and quadratic growth are: 

Linear growth 

0 1 1ti i i t tiη η η ζ= + +β  (2) 

Quadratic growth 
2

0 1 1 2 1ti i i t i titη η η η ζ= + + +β β  (3) 

where ζti is the random normal error for the ith individual in the tth time point; η0i, η1i and 
η2i are the intercept, slope and quadratic of latent factors, respectively, for individual i; 
and β1t and 2

1tβ  represent tth time point coefficients that determine the shape of the 
growth curve. Level 2 models are: 

Linear growth 

0 0 0i iη ζ= +α  (4) 

1 1 1i iη ζ= +α  (5) 

Quadratic growth 

0 0 0i iη ζ= +α  (6) 

1 1 1i iη ζ= +α  (7) 

2 2 2i iη ζ= +α  (8) 

where ζ0i, ζ1i and ζ2i are normal random errors; α0, α1 and α2 are latent means of intercept, 
slope and quadratic terms for individual i and wi is weight. All MAP tests have been 
tested as one latent factor (Wang et al., 2011). Figure 1 and Figure 2 present the MLGM 
with linear and quadratic latent growth. 

2.4 Measurement invariance of using MLGM 

The measurement invariance (Drasgow, 1987; Ferrer et al., 2008; Meredith, 1993) 
evaluated in this study is the invariance across time points of testing. Although values of 
manifest variables are different across time in longitudinal studies, they should be on the 
same measurement scale to derive an equal definition of a latent construct across time. 
Widaman and Reise (1997) classified two types of factorial invariance as non-metric 
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(configural) and metric. Configural invariance (CI) refers to the same indicators of the 
latent construct. The metric factorial invariance has three hierarchical levels, which are 
categorised as weak invariance (WI), where the factor loading of each indicator is 
invariant over time; strong invariance (SI), where the factor loading and intercept of each 
indicator are invariant over time; and strict factorial invariance (SFI), where the factor 
loading, intercept and unique variance of each indicator are invariant over time. Sayer 
and Cumsille (2001) showed that the SFI is unlikely to hold because heterogeneous 
variance across time is often observed. In this study, only CI, WI and SI are analysed. 
The invariance tested is summarised in three conditions: the CI, the WI that can be 
expressed as equation (9) and the SI that can be expressed in equation (10) and  
equation (11): 

0 1 2H : j j jT jλ λ λ λ= = =…  (9) 

0 1 2H : j j jT jλ λ λ λ= = =…  (10) 

0 1 2H : j j jT j= = =…α α α α  (11) 

where λ1 = 1, α0 = 0 and variances of εjti and ζti may vary over time. And for structural 
differences, the mean of ηti and variance of ηti vary over time. 

Several well-known goodness-of-fit (GOF) indices were used to evaluate the model 
fit. They are 

1 absolute indices that include chi-square χ2 and standardised root mean square 
residual (SRMR) 

2 incremental indices that include the comparative fit index (CFI) and Tucker-Lewis 
Index (TLI) 

3 parsimony index, the root mean square error of approximation (RMSEA). 

For nested models that include a different shape of growth (e.g., linear versus quadratic), 
both Akaike’s Information Criterion (AIC; Akaike, 1987) and Bayesian Information 
Criterion (BIC) (Schwartz, 1978) are obtained for each model tested. According to 
Raftery (1995), the values of BIC difference (BIC of quadratic model – BIC of linear 
model) ranging from 0 to 2 are interpreted as weak evidence for quadratic model, values 
of 2 to 6 are interpreted as moderate, values of 6 to 10 are interpreted as strong and 
values > 10 are interpreted as very strong. For model comparisons with increased 
constraints, the χ2 value also provides the basis of comparison with the previously fitted 
model in addition to AIC and BIC. χ2 is not considered best in practice because it is 
sample-size dependent. A non-significant difference in χ2 values between nested models 
reveals that all equality constraints hold across time. Therefore, the measurement model 
remains invariant across groups as the constraints are increased. A significant χ2value 
does not necessarily indicate a departure from invariance when the sample size is large. 
Hu and Bentler (1999) recommended using combinations of GOF indices to obtain a 
robust evaluation for model-data fit in structural equation modelling. The cut-off criterion 
values of a good model-fit that they recommended are CFI > 0.95, TLI > 0.95,  
RMSEA < 0.06 and SRMR < 0.08. It is worth noting that many researchers (Marshet al., 
2005; Marsh, 2007; Sayer and Cumsille, 2001) consider the GOF criteria from Hu and 
Bentler too restrictive. All analyses are conducted in Mplus 5.1 (Muthén and Muthén, 
2007). 
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2.5 Analytic approach 

The different MLGM models have been used for different state MAP test results because 
different states have different test specification or test blueprints. For each state, both 
linear and quadratic MLGM models are fitted to MAP test data. All missing data are 
handled by using Mplus default and according to Muthén et al. (1978), it is preferable to 
pairwise deletion (LISTWISE = ON missing data is dealt using pairwise deletion) 
because pairwise deletion requires missing completely at random (MCAR), not missing 
at random (MAR). 

Figure 3 Observed individuals growth of Y[11] of MAP mathematics test across five-wave for 
Colorado 

 

Figure 4 Estimated individuals quadratic growth of Y[11] of MAP mathematics test across five-
wave for Colorado 
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Table 5 Goodness-of fit indexes of MLGM models of MAP reading tests for different states 
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Table 6 GOF indexes of MLGM models of MAP mathematics tests for different states 

 

St
at

e 
M

od
el

 
N

 
χ2  

df
 

Δχ
2  

C
FI

 
TL

I 
RM

SE
A*

 
SR

M
R 

AI
C

 
BI

C
 

5,
41

7 
3,

20
0.

48
2 

40
5 

 
0.

98
6 

0.
98

5 
0.

03
6 

(.0
35

, .
03

7)
 

0.
03

3 
1,

20
2,

56
2.

01
3 

1,
20

3,
15

5.
77

0 
C

ol
or

ad
o 

Li
ne

ar
 

qu
ad

ra
tic

 
 

2,
98

3.
48

8 
40

1 
21

6.
99

4 
0.

98
7 

0.
98

6 
0.

03
4 

(.0
33

, .
03

6)
 

0.
03

3 
1,

20
2,

35
3.

01
1 

1,
20

2,
97

3.
15

6 
20

,0
00

 
11

,3
37

.5
22

 
27

5 
 

0.
98

2 
0.

98
1 

0.
04

5 
(.0

44
, .

04
6)

 
0.

02
9 

3,
61

8,
79

6.
72

9 
3,

61
9,

38
9.

49
1 

Ill
in

oi
s 

Li
ne

ar
 

qu
ad

ra
tic

 
 

10
,3

22
.3

01
 

27
1 

1,
01

5.
22

1 
0.

98
4 

0.
98

2 
0.

04
3 

(.0
42

, .
04

4)
 

0.
02

7 
3,

61
7,

78
9.

50
7 

3,
61

8,
41

3.
88

3 
10

,2
47

 
14

8,
96

5.
43

8 
56

0 
 

0.
58

0 
0.

55
3 

0.
16

1 
(.1

60
, .

 1
62

) 
3.

55
9 

2,
79

0,
20

3.
18

1 
2,

79
0,

96
2.

82
9 

In
di

an
a 

Li
ne

ar
 

qu
ad

ra
tic

 
 

71
,9

63
.1

57
 

55
6 

77
,0

02
.2

81
0.

79
8 

0.
78

4 
0.

11
2 

(.1
11

, .
 1

13
) 

0.
99

5 
2,

71
3,

20
8.

90
0 

2,
71

3,
99

7.
48

7 
8,

96
6 

4,
76

4.
56

8 
17

0 
 

0.
97

9 
0.

97
7 

0.
05

5 
(.0

54
, .

05
6)

 
0.

04
8 

1,
26

4,
35

8.
92

3 
1,

26
4,

78
4.

99
5 

K
an

sa
s 

Li
ne

ar
 

qu
ad

ra
tic

 
 

3,
92

1.
29

5 
16

6 
84

3.
27

3 
0.

98
3 

0.
98

0 
0.

05
0 

(.0
49

, .
05

2)
 

0.
04

5 
1,

26
3,

52
3.

65
0 

1,
26

3,
97

8.
12

7 
6,

60
2 

3,
46

5.
56

1 
27

5 
 

0.
98

3 
0.

98
2 

0.
04

2 
(.0

41
, .

04
3)

 
0.

02
0 

1,
21

1,
00

1.
08

9 
1,

21
1,

51
0.

72
4 

K
en

tu
ck

y 
Li

ne
ar

 
qu

ad
ra

tic
 

 
2,

98
8.

20
7 

27
1 

47
7.

35
4 

0.
98

6 
0.

98
4 

0.
03

9 
(.0

38
, .

04
0)

 
0.

01
8 

1,
21

0,
53

1.
73

5 
1,

21
1,

06
8.

55
0 

6,
82

7 
4,

18
4.

20
0 

27
5 

 
0.

98
1 

0.
97

9 
0.

04
6 

(.0
44

, .
04

7)
 

0.
02

4 
1,

24
5,

72
0.

84
2 

1,
24

6,
23

2.
99

0 
M

ic
hi

ga
n 

Li
ne

ar
 

qu
ad

ra
tic

 
 

3,
82

2.
68

1 
27

1 
36

1.
51

9 
0.

98
3 

0.
98

1 
0.

04
4 

(.0
43

, .
04

5)
 

0.
02

4 
1,

24
5,

36
7.

32
3 

1,
24

5,
90

6.
78

5 
20

,0
00

 
15

,8
70

.1
94

 
17

0 
 

0.
97

0 
0.

96
6 

0.
06

8 
(.0

67
, .

06
9)

 
0.

09
3 

2,
85

7,
01

4.
33

5 
2,

85
7,

48
8.

54
4 

M
in

ne
so

ta
 

Li
ne

ar
 

qu
ad

ra
tic

 
 

13
,3

37
.0

92
 

16
6 

2,
53

3.
10

2 
0.

97
5 

0.
97

1 
0.

06
3 

(.0
62

, .
06

4)
 

0.
08

2 
2,

85
4,

48
9.

23
3 

2,
85

4,
99

5.
05

6 
20

,0
00

 
13

,2
33

.3
52

 
27

5 
 

0.
98

0 
0.

97
8 

0.
04

9 
(.0

48
, .

04
9)

 
0.

02
7 

3,
64

9,
80

2.
55

0 
3,

65
0,

39
5.

31
2 

So
ut

h 
C

ar
ol

in
a 

Li
ne

ar
 

qu
ad

ra
tic

 
 

11
,1

24
.6

77
 

27
1 

2,
10

8.
67

5 
0.

98
3 

0.
98

1 
0.

04
5 

(.0
44

, .
04

5)
 

0.
02

1 
3,

64
7,

70
1.

87
6 

3,
64

8,
32

6.
25

1 
14

,2
78

 
8,

23
0.

01
0 

17
0 

 
0.

97
8 

0.
97

6 
0.

05
8 

(.0
57

, .
05

9)
 

0.
04

6 
2,

04
9,

74
3.

76
7 

2,
05

0,
19

7.
75

5 
W

as
hi

ng
to

n 
Li

ne
ar

 
qu

ad
ra

tic
 

 
7,

61
5.

22
8 

16
6 

61
4.

78
2 

0.
98

0 
0.

97
7 

0.
05

6 
(.0

55
, .

05
7)

 
0.

04
2 

2,
04

9,
13

6.
98

5 
2,

04
9,

62
1.

23
9 

15
,3

56
 

9,
38

9.
81

2 
27

5 
 

0.
98

0 
0.

97
8 

0.
04

6 
(.0

46
, .

04
7)

 
0.

02
4 

2,
78

0,
05

9.
98

1 
2,

78
0,

63
2.

92
6 

W
is

co
ns

in
 

Li
ne

ar
 

qu
ad

ra
tic

 
 

8,
31

0.
06

3 
27

1 
1,

07
9.

74
9 

0.
98

2 
0.

98
0 

0.
04

4 
(.0

43
, .

04
5)

 
0.

02
2 

2,
77

8,
98

8.
23

3 
2,

77
9,

59
1.

73
5 

N
ot

e:
 *

V
al

ue
s i

n 
pa

re
nt

he
se

s a
re

 lo
w

er
 a

nd
 u

pp
er

 9
0%

 c
on

fid
en

ce
 li

m
its

 o
f R

M
SE

A
.



   

 

   

   
 

   

   

 

   

   398 S. Wang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

3 Results 

3.1 Results of MLGM 

Figure 3 and Figure 4 illustrate a sample of observed and estimated individual quadratic 
growth based on MGLM across five-wave academic terms. Table 5 and Table 6 display 
the summaries of GOF indexes of MLGM data fit for linear and quadratic growth in 
reading and mathematics across states. All values of the fit indexes satisfy the Hu and 
Bentler (1999) criteria in both content areas and show that each model fits the data 
extremely well across states, with one exception in Indiana for mathematics. 

The overall results suggest that both linear and quadratic MLGMs are reasonably 
good models for MAP tests in ten states. For AIC, the lower value (positive or negative) 
indicates a better fit than the higher value. The results show that the quadratic model fits 
data better than the linear model in the nested modelling comparison. For BIC, all 
differences between quadratic and linear models are greater than 10 in both reading and 
mathematics, which indicate that the quadratic model fits the data better than the linear 
model. The statistically significant χ2 difference between the quadratic and linear models 
provides additional evidence to support the conclusion that the quadratic model is a better 
fit for the data than the linear model. It is also important to note that both the linear and 
quadratic models show that the longitudinal achievement construct underlying 
achievement measures equally well in growth. 

3.2 Results of invariance of MLGM 

Table 7 and Table 8 present the summaries of GOF indexes with nested linear MLGM 
that was used for measurement invariance across five waves in reading and mathematics. 
Nearly all fit indexes satisfied Hu and Bentler’s criteria in both reading and mathematics 
tests across states except Indiana. Some SRMRs seemed to be slightly above Hu and 
Bentler’s criteria. In evaluating measurement invariance, the simple model is a restricted 
model and the complex model is an unrestricted model. The effect of constraints imposed 
on the less restricted model can be evaluated by using the difference of χ2 (Δχ2) for 
nested model comparisons, because the degree of freedom is equal to the difference in the 
degrees of freedom of two models. Results indicate that all χ2 increases (Δχ2) are 
statistically significant for evaluating the differences of invariance between unrestricted 
and restricted models. As χ2 becomes statistically significant, a more complex model 
should be chosen. However, the limitations of the χ2 test are the sample size dependency 
(Cheung and Rensvold, 2002) and the difference of other GOF indexes (such as CFI) as 
adjuncts to the χ2 statistic, which can also be used to assess model fit. According to 
Cheung and Rensvold (2002), if the difference of CFI (ΔCFI) is less than 0.01 between 
the two models, the simple model is not worse than the complex model. The value of all 
ΔCFIs less than 0.01 in both tests indicates that constrained parameters are invariant 
across time. 

In summary, the results of analyses in this study provide clear support to the CI, WI 
and SI for all tests except the Indiana mathematics test. These results suggest that 
longitudinal constructs of MAP tests are well defined for measuring student achievement 
growth. 
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Table 7 GOF indexes of invariances of linear MLGM models of MAP reading tests 
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Table 7 GOF indexes of invariances of linear MLGM models of MAP reading tests 
(continued) 
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Table 8 GOF indexes of invariances of linear MLGM models of MAP mathematics tests 
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Table 8 GOF indexes of invariances of linear MLGM models of MAP mathematics tests 
(continued) 
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4 Discussion 

Since the factor structure of a test is directly related to the construct validity interpretation 
of the test at a particular point in time, the longitudinal factor structure at different points 
in time is crucial for the longitudinal construct validity interpretation to measure student 
growth. The achievement constructs of a test at a particular time, grade level or semester 
calendar is well studied and reported in practice for given purposes and related 
interpretation of test scores. Although many standardised achievement tests in large-scale 
assessments report test scores on a vertical scale for student growth and group 
achievement trends, few studies reported the longitudinal achievement construct. Many 
researchers are interested in whether the longitudinal achievement construct remains the 
same over time or shifts from time to time from content standard and vertical scaling 
perspectives. A few studies have focused on validation of longitudinal achievement 
construct using the MLGM approach, especially for studies based on CAT longitudinal 
data. 

First, this study examined the hypothesis of shapes of latent construct across time. As 
shown in Table 5, the shape of the growth fits both linear and quadratic MLGM well; 
however, quadratic growth has slight advantages over linear growth in terms of fit 
statistics. This means that between two competing interpretations of longitudinal 
constructs across grades, quadratic growth makes more real sense because, in general, the 
rate of changes of student achievement across grades are not constant. From longitudinal 
perspective, for example, lower grades growth is always faster than higher grades growth 
across time for both reading and mathematics achievement tests. 

Second, the present study tested the hypothesis of factorial invariance of MAP 
reading and mathematics tests over time. The evidence collected in the study shows that 
with repeated measures, the construct of both reading and mathematics remained 
consistent at different points in time, which supports the internal structure of MAP design 
for intended purposes. The evidence also suggest that there are not only configure and 
WI, but also SI of the longitudinal construct in MAP reading and mathematics tests 
across different states (except the Indiana mathematics test), which supports valid 
interpretations of student growth. 

The current study utilised the advantages of MLGM over FLGM to investigate the 
longitudinal construct of achievement test. No longitudinal achievement constructs 
studies using MLGM have been done on CAT data across states. The major difference 
between FLGM and MLGM is that the FLGM uses total scores as observable variable in 
analysis, while the MLGM uses item cluster (or item) as observable variable. However, 
since the study was based on longitudinal data, students who missed one test were 
excluded from the sample, which might introduce sample bias. 

In summary, this study underscores the importance of empirical evidence in 
validating longitudinal achievement constructs to support the interpretation of student 
growth. In particular, the study explored the feasibility of assessing the internal structure 
of MAP tests using CAT data. The results support consistent and reasonable 
interpretations of the MAP reading and mathematics tests across academic calendar years 
used by different states. This study carries the validation process beyond a traditional 
construct validation process in which validation evidence is usually collected at one point 
in time only, but used to support the longitudinal achievement construct for student 
growth. It is indeed important to investigate the longitudinal achievement construct to 
ensure that the same construct is measured over time for a valid interpretation of student 
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achievement growth. We strongly recommend that achievement test publishers and users 
continue investigating the longitudinal achievement construct and construct invariance 
over time in the near future to support valid interpretations of student academic growth. 

5 Limitations of the study 

First, although the current study takes the advantages of MLGM over FLGM, the study 
could not avoid using item parcels or clustering items as indicators of the MLGM for 
CAT data. The effect of using aggregated indicators vs. individual items is unknown and 
item parcels’ interpretability has not been sufficiently examined with respect to content. 
Second, it is well-known fact that heterogeneity in sample may bias the model estimates 
(Muthén, 1989). All samples used in this study are not homogeneous with respect to at 
least gender and ethnicity, and the impact of heterogeneity on model parameter estimates 
is unknown. 
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